
TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 

www.fx1618.com



Building Winning 
Trading Systems with 

TradeStation™

www.fx1618.com



Founded in 1807, John Wiley & Sons is the oldest independent publishing
company in the United States. With offices in North America, Europe, Australia
and Asia, Wiley is globally committed to developing and marketing print and
electronic products and services for our customers’ professional and personal
knowledge and understanding.

The Wiley Trading series features books by traders who have survived the
market’s ever changing temperament and have prospered—some by reinventing
systems, others by getting back to the basics. Whether a novice trader,
professional, or somewhere in between, these books will provide the advice and
strategies needed to prosper today and well into the future.

For a list of available titles, please visit our Website at www.WileyFinance.com.

www.fx1618.com



Building Winning
Trading Systems with

TradeStation™

George Pruitt
John R. Hill
FUTURES TRUTH

John Wiley & Sons, Inc.

www.fx1618.com



Copyright © 2003 by George Pruitt and John R. Hill. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
201-748-6011, fax 201-748-6008, e-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect to
the accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose.  No warranty may be created
or extended by sales representatives or written sales materials.  The advice and strategies
contained herein may not be suitable for your situation.  You should consult with a
professional where appropriate.  Neither the publisher nor author shall be liable for any loss of
profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services, or technical support, please
contact our Customer Care Department within the United States at 800-762-2974, outside
the United States at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books.

For more information about Wiley products, visit our web site at www.wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc. is aware of a claim, the product names appear
in initial capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

Library of Congress Cataloging-in-Publication Data:
Pruitt, George, 1967–

Building winning trading systems with TradeStation™ / George Pruitt, John R. Hill.
p. cm. — (the Wiley trading series)

Includes index.
ISBN 0-471-21569-4 (cloth: alk. paper)

1. Investments—Data processing. 2. Stocks—Data processing. I. Hill, John R.,
1926– II. Title. III. Series.
HG4515.95.P78 2002
332.64'2'02855369—dc21

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.fx1618.com



To my loving wife and family.
J. H.

I would like to dedicate this book to Mary, Cliff, Butch, and
Marilyn for their eternal courage and support. I would also

like to thank my loving wife, Leslie and my patient and
understanding children, Brandon and Emily.

G. P.

www.fx1618.com



www.fx1618.com



vii

Contents

Acknowledgments xi
Introduction xiii

Chapter 1 Fundamentals 1

What is EasyLanguage? 1
Variables and Data Types 2

Operators and Expressions 5
Precedence of Operators 6
TradeStation 2001i versus TradeStation 6.0 8

TradeStation 2000i 9
PowerEditor 9
A Simple Program 11
TradeStation StrategyBuilder 13

TradeStation 6.0 18
PowerEditor 18
A Simple Program 22

Conclusions 29

Chapter 2 EasyLanguage Program Structure 30

Structured Programming 30
Program Header 31
Calculation Module: MyRSIsystem 32
Conclusions 37

www.fx1618.com



Chapter 3 Program Control Structures 39

Conditional Branching with If-Then 39
Conditional Branching with If-Then-Else 43
Repetitive Control Structures 48

For Loop 48
While Loop 50

Conclusions 51

Chapter 4 TradeStation Analysis Techniques 52

Indicators 52
PaintBar and ShowMe Studies 59
Functions 65
Strategies 70
Conclusions 75

Chapter 5 Measuring Trading System Performance and System
Optimization 77

TradeStation’s Summary Report 78
Total Net Profit 81
Maximum Intraday Draw Down 82
Account Size Required and Return on Account 82
Average Trade 83
Maximum Consecutive Winners and Losers 84
Number of Trades and Average Number of Bars Per Trade 84
Average Winning and Losing Trade 84

Trades 85
Analysis 88
Graphs 93
Optimization 96
Conclusions 108

Chapter 6 Trading Strategies That Work 
(or The Big Damn Chapter on Trading Strategies) 109

The King Keltner Trading Strategy 111
King Keltner Pseudocode 112
King Keltner Program 112
King Keltner Summary 114

The Bollinger Bandit Trading Strategy 115
Bollinger Bandit Pseudocode 116
Bollinger Bandit Program 116
Bollinger Bandit Summary 118

The Thermostat Trading Strategy 119
Thermostat Pseudocode 121

viii Contents

www.fx1618.com



Thermostat Program 122
Thermostat Summary 123

The Dynamic Break Out II Strategy 126
Dynamic Break Out II Pseudocode 127
Dynamic Break Out II Program 128
Dynamic Break Out II Summary 130

The Super Combo Day Trading Strategy 134
Super Combo Daily Data Bar Calculation Pseudocode 139
Super Combo Code 143
Super Combo Summary 146

The Ghost Trader Trading Strategy 149
Ghost System Code 150
Real System Code 151

The Money Manager Trading Stragegy 153
The Money Manager Code 154
Conclusions 156

Chapter 7 Debugging and OutPut 157

Logical Versus Syntax Errors 158
Debugging with the Print Statement and Print Log 158
Table Creator 160
Conclusions 166

Chapter 8 TradeStation as a Research Tool 168

Commitment of Traders Report 168
Day of Week Analysis 176

Open to Close and Open to Open Relationships 176
Day of Week Volatility Analysis 177
Time of Day Analysis 183
Pattern Recognition 188
Intermarket Analysis 192
Conclusions 193

Chapter 9 Using TradeStation’s Percent Change Charts to Track
Relative Performance 194

Working with Percent Change Charts 196
Conclusions 200

Chapter 10 Options 201

Option Basics 202
Listed Options 204

Nomenclature and Terminology 205
Long and Short 206

Contents ix

www.fx1618.com



Closing Option Trades 209
American Versus European Options 210
The Special Properties of Options 210
Volatility Trading 212
Options and Changing Conditions 212
The Greeks 213
Who Are Market Makers? 214

Option Strategies 215
Single-Option Strategies 216

Long Call 216
Short Covered Call 217
Short Naked Call 218
Long Call with Short Stock 220
Long Put 220
Short Covered Put 222
Short Naked Put 222
Long Put with Long Stock 223

Equivalent Strategies 224
Combinational Strategies 225

Chapter 11 Interviews with Developers 228

Welles Wilder 228
Dr. John Clayburg 232
Keith Fitschen 235
Randy Stuckey 238
Dave Fox 241
Wayne Griffith 243
Mike Barna 247
Ziad Chahal 250
John Tolan and Steve Marshall 254
John Ehlers 258
Charles Le Beau 262
Lundy Hill 265
Peter Aan 267
Michael Chisholm 270
Michael A. Mermer 273
A Talk with Larry Williams by Rob Keener 276

Appendix A EasyLanguage Syntax Errors 283

Appendix B TradeStation 2000i Source Code of Select Programs 309

Appendix C Reserved Words Quick Reference 326

Index 381

x Contents

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



xi

Acknowledgments

We would like to thank TradeStation Securities, OptionVue software, and Jan
Arps and Len Yates for their contributions.

www.fx1618.com



www.fx1618.com



xiii

Introduction

Before System Writer (the grandfather of today’s current TradeStation), sys-
tem developers and traders did not have a commercialized software platform to
develop their trading ideas. We are not talking about charting packages; we are
talking about programs that could understand a trading strategy based on tech-
nical analysis. Sure, there were other sophisticated programs in the 1980s that
could be used, but they required a thorough understanding of programming,
additional software, and extreme patience with the software developer. Most of
these programs were not open platform; you had to program within their lim-
ited scripting language and could not share your programs with others. The
programs that were potentially open platform usually required a separate edi-
tor and compiler and a very sophisticated user. In fact, we developed and still
use a package that is based on a FORTRAN compiler. The System Writer/
TradeStation programs provided one sleek package that gave the ability to
test, optimize, and trade to the trading masses. TradeStation has been accepted
worldwide as the premier market analysis platform and the standard against
which other trading/testing platforms are measured. The latest version of
TradeStation has evolved into more than just software; it is a fully self-
contained trading platform that incorporates direct access brokerage for
futures and equities traders. Along with the birth of TradeStation 6.0, Omega
Research has been reborn and renamed to TradeStation Securities.

We are not here to proclaim TradeStation’s Securities products to be the
best in the business, but we are here to educate their users on how to use what
is accepted as the industry standard. Of course Omega Research has had their
problems; all software developers have had their problems. Recently, it was
heard that the inventor of the CTRL + ALT + DEL key sequence at IBM

www.fx1618.com



stated that he may have created it, but Microsoft made it famous. What sets
TradeStation apart from the other software packages is its powerful scripting
language EasyLanguage. EasyLanguage is more powerful than easy; it really
isn’t a scripting language, but more of a full-blown programming language. It
can be compared to BASIC, FORTRAN, Pascal, or C. In fact, it is based off of
a Pascal compiler and has been around since 1987. Sam Tennis, the father of
EasyLanguage, wanted to provide traders with a simple and logical language
that required little programming knowledge. In our opinion, he was successful
in this endeavor.

Technical analysis of stocks and commodities is complex and you would
think that a programming language that deals with such a lofty subject would
be as complex. Fortunately, EasyLanguage comes with a complete library of
the industry’s most widely used analysis techniques. Third-party developers
have further extended this library. Traders do not need to recreate the wheel,
nor do they need the programming knowledge to put these techniques into
action. Traders can even customize their own ideas or existing ones and add
them to the library.

This book is designed for all TradeStation and EasyLanguage users.
However, this book does expect users to be somewhat familiar with TradeSta-
tion and its functions. Beginners can obtain a good foundation on program-
ming technique, program control structures, data structures, and
familiarization on the use of the EasyLanguage built-in functions. All users will
benefit from the chapters that discuss proper trading system development. We
explore all areas of analysis techniques from Indicators to Paint Bars with a spe-
cial emphasis on trading strategies.

Since a large portion of this book involves actual computer code, a com-
panion CD-ROM, with all of the computer programs and data, is provided for
the reader. The analysis techniques are provided in TradeStation 2000i and
TradeStation 6.0 formats. Previous version users can still utilize the analysis
techniques by simply typing them into their version of PowerEditor. Chapter
5 enlists the help of Microsoft Excel spreadsheet software to create three-
dimensional contour charts. Excel isn’t necessary, but some type of spreadsheet
software is needed to transform the data into a chart.

This book was designed with the trader in mind. Most of the trading
techniques were designed and tested with indices, futures, and commodities
(we focused on these markets due to their long histories with trading systems).
Strictly equity traders will still get a good programming and good system
design education. Index (mini or full-size) and futures traders will be privy to
five highly successful trading approaches. These approaches are good launch-
ing pads for further and much more detailed research.

In our opinion, the best way to make full use of this book is for the reader
to work his way through the book starting with Chapter 1. At the end of chap-
ters that have detailed analysis techniques (or computer programs—the two terms

xiv Introduction

www.fx1618.com



are interchangeable), we would suggest loading from the CD-ROM, verifying,
and running the programs in TradeStation. The concepts of each chapter
should be mastered before moving on to the next chapter.

We hope you (the reader) enjoy this book and that it opens your eyes to
the power of TradeStation and your own creativity. Good luck and good
trading.

Introduction xv

www.fx1618.com



www.fx1618.com



1

1

Fundamentals

WHAT IS EASYLANGUAGE?

When you code (slang for writing your ideas into a programming language) an
analysis technique, you are directing the computer to follow your instructions
to the tee. A computer program is nothing but a list of instructions. A com-
puter is obedient and speedy, but it is only as smart as its programmer. In addi-
tion, the computer requires that its instructions to be in an exact format. A
programmer must follow certain syntax rules.

EasyLanguage is the medium used by traders to convert a trading idea
into a form that a computer can understand. Fortunately for nonprogrammers,
EasyLanguage is a high level language; it looks like the written English lan-
guage. It is a compiled language; programs are converted to computer code
when the programmer deems necessary. The compiler then checks for syntac-
tical correctness and translates your source code into a program that the
computer can understand. If there is a problem, the compiler alerts the pro-
grammer and sometimes offers advice on how to fix it. This is different than a
translated language, which evaluates every line as it is typed.

All computer languages, including EasyLanguage, have several things in
common. They all have:

• Reserved Words. Words that the computer language has set aside for a
specific purpose. You can only use these words for their
predefined purposes. Using these words for any other
purpose may cause severe problems. (See the list of
reserved words in Appendix C.)

www.fx1618.com



• Remarks. Words or statements that are completely ignored
by the compiler. Remarks are placed in code to help
the programmer, or other people who may reuse the
code, understand what the program is designed to do.
EasyLanguage also utilizes skip words. These words are
included in a statement to make the programming eas-
ier to read. For example, Buy on next bar at myPrice
stop is the same as Buy next bar myPrice stop. The words
on and at are completely ignored. (See the list of skip
words in Appendix C.)

• Variables. User-defined words or letters that are used to store
information.

• Data Types. Different types of storage; variables are defined by
their data types. EasyLanguage has three basic data
types: Numeric, Boolean, and String. A variable that is
assigned a numeric value, or stored as a number, would
be of the Numeric type. A variable that stores a true or
false value would be of the Boolean type. Finally, a
variable that stores a list of characters would be of the
String type.

Variables and Data Types

A programmer must understand how to use variables and their associated data
types before they can program anything productive. Let’s take a look at a snip-
pet of code.

mySum = 4 + 5 + 6;
myAvg = MySum/3;

The variables in this code are mySum and myAvg and they are of the Numeric
data type; they are storage places for numbers. EasyLanguage is liberal con-
cerning variable names, but there are a few requirements. A variable name
cannot

• start with a number or a period (.)
• be a number
• be more than 20 alphanumeric characters long
• include punctuation other than the period (.) or underscore (_)

2 Building Winning Trading Systems with TradeStation

www.fx1618.com



Correct Incorrect
myAvg 1MyAvg
mySum .sum
sum val+11
val1 the//sum
the.sum my?sum
my_val 1234

Variable naming is up to the style of the individual programmer. EasyLan-
guage is not case sensitive (you can use upper or lowercase letters in the
variable names). (Note: This is our preference—may not be everybody’s.)
Lowercase letters are preferred for names that only contain one syllable. For
variable names that have more than one syllable, we begin the name with a
lowercase letter and then capitalize the beginning of each subsequent syllable.

sum, avg, total, totalSum, myAvg, avgValue, totalUpSum, totDnAvg

Still referring to the previous snippet of code, mySum is assigned the value of
15 and myAvg is assigned the value of 15/3 or 5. If a variable name is created,
it must be declared ahead of time. The declaration statement defines the initial
value and data type of the variable. The compiler needs to know how much
space to reserve in memory for all variables. The following code is a complete
EasyLanguage program. (Note: Most of the code that you will see in this book
will be particular to EasyLanguage and will probably not work in any other
language.)

Vars: mySum(0),myAvg(0);
mySum = High + Low + Close ;
myAvg = mySum/3 ;

The Vars: (or Variables:) statement tells the computer what variables are being
declared and initialized. We declare the variables by simply listing them in the
Vars statement and initialize them by placing an initial value in parentheses fol-
lowing the variable name. In this case, mySum and myAvg are to be equal to
zero. EasyLanguage is smart enough to realize that these variables should be of
the Numeric data type, since we initialized them with numbers. Variable
names should be self-descriptive and long enough to be meaningful. Which of
the following is more self-explanatory?

mySum = High+Low+Close; or k = High + Low + Close;
myAvg = mySum/3; j = k/3;
BuyPt = Close + myAvg; l = Close+j;

Fundamentals 3

www.fx1618.com



Variables of Boolean and String types are declared in a similar fashion.

Vars: myCondition(false),myString("abcdefgh");

The variable myCondition was initialized to false. The word false is a reserved
word that has the value of zero. This word cannot be used for any other pur-
pose. The variable myString was initialized to abcdefgh. Sometimes you will
need to use a variable for temporary purposes and it is difficult to declare and
initialize all of your variables ahead of time. In the case of a temporary variable
(one that holds a value for a short period of time), EasyLanguage has declared
and initialized several variables for your use; value0 through value99 have been
predefined and initialized to zero and are ready for usage in your programs.
The following is a complete EasyLanguage program:

value1 = High + Low + Close;
value2 = (High + Low)/2.0;

Notice there isn’t a Vars statement. Since value1 and value2 are predefined, the
statement isn’t needed. You have probably noticed the semicolon (;) at the end
of each line of code. The semicolon tells the compiler that we are done with
this particular instruction. In programming jargon, instructions are known as
statements. Statements are made up of expressions, which are made up of con-
stants, variables, operators, functions, and parentheses. Some languages need a
termination symbol and others do not. EasyLanguage needs the statement ter-
mination symbol. Remember to put a semicolon at the end of each line to pre-
vent a syntax error.

Inputs are similar to variables. They follow the same naming protocol
and are declared and initialized. However, an input remains constant
throughout an analysis technique. An input cannot start a statement (a line of
instruction) and cannot be modified within the body of the code. One of the
main reasons for using inputs is that you can change input values of applied
analysis techniques without having to edit the actual EasyLanguage code.
Inputs would be perfect for a moving average indicator. When you plot this
indicator on a chart, you simply type in the length of the moving average into
the input box of the dialog box. You don’t want to have to go back to the mov-
ing average source code and change it and then verify it. Also, when used in
trading strategies, inputs allow you to optimize your strategies. This is dis-
cussed in Chapter 5.

Notice how inputs and variables are declared in similar style.

Inputs: length1(10),length2(20),flag(false);

Vars:   myLength1(10),myAvgVal(30);

However, notice how they are used differently in coding.

4 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



Variables

myLength1 = myAvgVal + myLength1;  {Correct}

Inputs

length1 = myAvgVal + length1;      {Incorrect}
myLength1 = length1*2;             {Correct}

Variables can start a statement and can be assigned another value. Since inputs
are constants and cannot be assigned new values, they cannot start a statement.

In a strongly typed language, such as C, Pascal, or C++, if you assign a real
value such as 3.1456 to an integer typed variable, the decimal portion is trun-
cated and you end up with the number 3. As we all know, precision is impor-
tant when it comes to trading, so EasyLanguage includes only one Numeric
type. All numbers are stored with a whole and a fractional part. In the old days
when CPUs were slow, noninteger arithmetic took too much time and it was
advised to use integer variables whenever possible.

OPERATORS AND EXPRESSIONS

Previously, we discussed statements and how they are made up of expressions.
To review, an expression consists of a combination of identifiers, functions,
variables, and values, which result in a specific value. Operators are a form of
built-in functions and come in two forms: unary and binary. A binary operator
requires two operands, whereas a unary operator requires only one. Most of
your dealings with operators in EasyLanguage will be of the binary variety.
Some of the more popular ones are: + – / * < = > >= <= <> AND OR. These
binary operators can be further classified into two more categories: arithmetic
and logical.

Expressions come in three forms: arithmetic, logical, and string. The type
of operator used determines the type of expression. An arithmetic expression
includes + – / *, whereas a logical or Boolean expression includes < = > >= <=
<> AND OR.

Arithmetic Expressions Logical Expressions
myValue = myValue + 1; myCondition1 = sum > total;
myValue = sum – total; myCondition1 = sum <> total;
myResult = sum*total+20; cond1 = cond1 AND cond2

Arithmetic expressions always result in a number, and logical expressions
always result in true or false. True is equivalent to 1, and False is equivalent to
0. String expressions deal with a string of characters. You can assign string val-
ues to string variables and compare them.

Fundamentals 5

www.fx1618.com



myName1 = "George Pruitt";
myName2 = "John Hill";
cond1 = (myName1 <> myName2);
myName3 = myName1 + " " + myName2;

Concatenation occurs when two or more strings are added together. Basically,
you create one new string from the two that are being added together.

PRECEDENCE OF OPERATORS

It is important to understand the concept of precedence of operators. When
more than one operator is in an expression, the operator with the higher prece-
dence is evaluated first and so on. This order of evaluation can be modified
with the use of parentheses. EasyLanguage’s order of precedence is as follows:

1. Parentheses
2. Multiplication or division
3. Addition or subtraction
4. <, >, =, <=, >=, <>
5. AND
6. OR

Here are some expressions and their results:

1. 20 – 15/5 equals 17 not 1
20 – 3 division first, then subtraction

2. 10 + 8/2 equals 14 not 9
10 + 4 division first then addition

3. 5 * 4/2 equals 10
20/2 division and multiplication are equal

4. (20 – 15)/5 does equal 1
5/5 parentheses overrides order

5. (10 + 8)/2 equals 9
18/2 parentheses overrides order

6. 6 + 2 > 3 true
8 > 3

7. 2 > 1 + 10 false
2 < 11

6 Building Winning Trading Systems with TradeStation

www.fx1618.com



8. 2 + 2/2 * 6 equals 8 not 18
2 + 1 * 6 division first
2 + 6 then multiplication
8 then addition

These examples have all the elements of an arithmetic expression—numeric
values and operators—but they are not complete EasyLanguage statements. An
expression must be part of either an assignment statement (myValue = mySum
+ myTot) or a logical statement (cond1 = cond2 OR cond3).

The overall purpose of EasyLanguage is to translate an idea and perform
an analysis on a price data series over a specific time period. A price chart con-
sists of bars built from historical price data. Each individual bar is a graphical
representation of the range of prices over a certain period of time. A five-
minute bar would have the Opening, High, Low, and Closing prices of an
instrument over a five-minute time frame. A daily bar would graph the range
of prices over a daily interval. Bar charts are most often graphed in an Open,
High, Low, and Close format. Sometimes the opening price is left off. A can-
dlestick chart represents the same data, but in a different format. It provides an
easier way to see the relationship between the opening and closing prices of a
bar chart. Other bar data such as the date and time of the bar’s close, volume,
and open interest is also available for each bar. Since EasyLanguage works
hand-in-hand with the charts that are created by TradeStation, there are many
built-in reserved words to interface with the data. These reserved words were
derived from commonly used verbiage in the trading industry. You can inter-
face with the data by using the following reserved words. (Note: Each word has
an abbreviation and can be used as a substitute.)

Reserved Word Abbreviation Description
Date D Date of the close of the bar.

Time T Time as of the close of the bar.

Open O Open price of the bar.

High H High price of the bar.

Low L Low price of the bar.

Close C Close price of the bar.

Volume V Number of contracts/shares traded.

OpenInt OI Number of outstanding contracts
(futures only).

If you wanted to determine that the closing price of a particular instrument was
greater than its opening price you would simply type: Close > Open, or, C > O.

Fundamentals 7

www.fx1618.com



The beauty of EasyLanguage is its ability to have all of the data of an instru-
ment at your fingertips. The reserved words that we use to access the different
prices of the current bar are also used to access historical data. You do this by
adding an index to the reserved word. The closing price of yesterday would be:
Close[1]. The closing price two days ago would be: Close[2] and so on. The
number inside the bracket determines the number of bars to look back.
The larger the number, the further you go back in history. If you wanted to
compare today’s closing price with the closing price ten days prior you would
type: Close > Close[10].

Before we move on, we should discuss how TradeStation stores dates and
times. January 1, 2001 is stored as 1010101 instead of 20010101 or 010101.
When the millennium changed, instead of incorporating the century into the
date, TradeStation simply added a single digit to the year. The day after
991231 was 1000101 according to TradeStation. Time is stored as military
time. For example, one o’clock in the afternoon is 1300 and one o’clock in the
morning is 100.

After that brief introduction to the world of programming, let’s go ahead
and set up and program a complete trading strategy. The PowerEditor is
where all of the magic takes place. This is your interface between your ideas
and their applications. All of your coding takes place here, and a thorough
understanding of this editor will reduce headaches and increase productivity.
In TradeStation 4.0 and 2000i, the PowerEditor is basically a stand-alone
application; it is an independent program and can be run with or without
TradeStation. In the newer TradeStation 6.0, the PowerEditor is more of a
component program; it runs within the confines of TradeStation.

TRADESTATION 2000i VERSUS 
TRADESTATION 6.0 

As of the writing of this book, there are two versions of TradeStation currently
being used: 2000i and 6.0. Based on input from users, we figure that half is
using one version and the other half is using the other. For this reason, the
remainder of this chapter will be broken into two main sections. (Beyond this
chapter, however, we will include the EasyLanguage code for 2000i in Appen-
dix B. We will concentrate on 6.0 in the remaining chapters as it is the latest
version and seems to be the way of the future.) Version 6.0 and 2000i are dif-
ferent enough to merit treating each one separately and we will refer to the two
versions as 6.0 and 2000i. TradeStation 6.0 is Omega Research’s all-inclusive
trading tool. Everything that you need to design, test, monitor, and execute an
analysis technique is in one slick and complete package. Omega Research is
now a brokerage/software company and equities and futures trades can be exe-
cuted through direct access with TradeStation.

8 Building Winning Trading Systems with TradeStation

www.fx1618.com



TradeStation 2000i

PowerEditor

Once this program is up and running, go under the File menu and select New.
A dialog box titled New will open. If the General tab is not selected, go ahead
and select it. Your screen should look like this:

Fundamentals 9

Figure 1.1 New Dialog—TradeStation 2000i

Once your screen looks like Figure 1.1 select the icon with the title Sig-
nal and click OK. We will ignore the other tabs in this dialog box at the
moment. Another dialog box titled Create a New Signal will open and ask for a
name and notes about the signal that you are creating. In the Name field go
ahead and type “MySignal-1” and in the Notes field type “Donchian Break
Out” and then click OK. A window titled MySignal-1 should open. This is your
clean sheet of paper on which to type your wonderful ideas. Before we do some
coding, let’s briefly take a look at some of the menus. Table 1.1 details the
selections that are available under the File menu.

Table 1.2 details the selections under the Edit menu.
Table 1.3 details the selections under the View menu.
Table 1.4 details the selections under the Tool menu.

www.fx1618.com



10 Building Winning Trading Systems with TradeStation

Table 1.1
File Menu

Menu Item Action

New Creates a new blank analysis technique.

Open Opens an existing analysis technique.

Close Closes current window.

Save Saves the current analysis technique.

SaveAs Allows renaming of the current analysis technique.

SaveAs Template Saves the current analysis technique as a template for
future use.

Save All Saves all currently open analysis techniques.

Import and Export Imports existing analysis techniques from other
sources or exports analysis techniques to other
sources.

Protect Protects the analysis technique with a password.

Verify Verifies the analysis technique. Checks for syntax
errors in code.

Verify All Verifies all functions and analysis techniques.

Properties Shows the name and notes of the analysis technique.
Allows the user to change these.

Page Setup Allows changing of the page setup.

Print Prints the code.

Print Preview Shows what will be printed.

Exit Exits out of PowerEditor.

Table 1.2
Edit Menu

Menu Item Action

Undo Undoes the last action

Redo Redoes the last action.

Cut Cuts the selected text.

Copy Copies the selected text.

Paste Pastes the selected text.

Clear Clears the selected text.

Select All Selects all text in the analysis technique.

Find Finds a specific string of text.

Find Next Finds the next occurrence of the specified string of
text.

Find in Files Powerful multifile search tool.

Replace Replaces a string of text with another string of text.

www.fx1618.com



Table 1.3
View Menu

Menu Item Action

Toolbars Customizes the tool bars.

Status Bar Hides/shows the Status bar.

Output Bar Hides/shows the Output bar. This little window will
become important when we start debugging.

Bookmarks Marks a particular section of text for reference
purposes

Font Sets the PowerEditor’s font.

Options Displays options for the PowerEditor.

Table 1.4
Tool Menu

Menu Item Action

EasyLanguage Dictionary Inserts EasyLanguage components into an analysis
technique.

Errors Window Options Changes the look of the Errors window.

Find In Files Window Options Changes the look of the Find In Files window.

Debug Window Changes the attributes of the Debug window.

Fundamentals 11

A Simple Program

Now that we are familiar with the menus and their functions, let’s go ahead and
code a simple program. We don’t need to know everything about the selections
in the menus to start coding. Jump in headfirst and type the following text
exactly as you see it here:

Inputs: longLength(40), shortLength(40);

Buy tomorrow at Highest(High,longLength) stop;
Sell tomorrow at Lowest(Low,shortLength) stop;

(Note: for those of you who may be moving to TradeStation 6.0 you
must type Sell Short to initiate a short position.)

After you have typed this, go under the File menu and select Verify or hit
the F3 key. Many of the commands in the menus have keyboard equivalents or
shortcuts. You can determine the shortcuts by selecting the menu and then the
menu item. (The keyboard shortcut is listed to the far right of the menu item.)
If you look at the Verify menu item on the File menu, you will see F3. You
should get a small dialog box that first says Verifying and then Excellent. If you

www.fx1618.com



get an error, simply check your code for any typos and Verify again. Congrat-
ulations, you have just written an analysis technique in the form of a signal!
Now let’s break each line of code down so that we can fully understand what is
going on.

Inputs: longLength(40), shortLength(40);

By typing this line you have created two constant variables of the numeric
data type. These two variables, longLength and shortLength, have been initi-
ated with the value of 40. These variables cannot be changed anywhere in the
body of the analysis technique. They can only be changed from the user inter-
face of this signal or in the program heading. This will be discussed later in this
chapter.

Buy tomorrow at Highest(High,longLength) stop;

This line instructs the computer to place a buy stop tomorrow at the highest
high of the last 40 days. Highest is a function call. Functions are subprograms
that are designed for a specific purpose and return a specific value. To com-
municate with a function, you must give it the information it needs. An auto-
matic teller machine is like a function; you must give it your PIN before it will
give you any money. In the case of the Highest function, it needs two bits of
information: what to look at and how far to look back. We are instructing this
function to look at the highs of the last 40 bars and return the highest of those
highs. For now, just accept that High means High prices and Low means Low
prices. (This is yet another subject that will be touched upon later.) When an
order is instructed through EasyLanguage, you must tell the computer the
type of order. In this case, we are using a stop order. Orders that are accepted
by EasyLanguage are:

• Stop. Requires a price and is placed above the market to buy and below
the market to sell.

• Limit. Requires a price and is placed below the market to buy and
above the market to buy.

• Market. Buys/sells at the current market price.

So, if the market trades at a level that is equal to or greater than the highest
high of the past forty days, the signal would enter long at the stop price.

Sell tomorrow at Lowest(Low,shortLength) stop;

The instructions for entering a short position are simply the opposite for
entering a long position.

12 Building Winning Trading Systems with TradeStation

www.fx1618.com



TradeStation StrategyBuilder

Now let’s create a trading strategy with our simple Donchian Break Out sig-
nal. The StrategyBuilder is a program that asks all of the pertinent information
concerning a trading strategy. It helps to organize all of the different trading
ideas and makes sure all of the parameters are set before the signal is evaluated.
Under the Go menu, select TradeStation StrategyBuilder. A dialog box titled
TradeStation StrategyBuilder should open and look similar to Figure 1.2.

Click on the New button. Another dialog box opens and asks for a name
and notes for this strategy. In the Name field type, “MyStrategy-1”, and in the
Notes field type, “A simple Donchian Break Out”. After typing the informa-
tion into these fields click the Next button. The next dialog box asks for the
signal to be used in this strategy. Click on the Add button. The next dialog box
should look similar to Figure 1.3.

Scroll up/down and find MySignal-1. You will notice that the boxes
under the Long Entry and Short Entry column headings are checked, but the
boxes underneath the Long Exit and Short Exit are not. This tells us that
the system only enters the market; it is never flat—the system is either long or
short. Long positions are liquidated when a short position is initiated and vice
versa. Our simple Donchian Break Out is a pure stop and reverse system. Click
on MySignal-1 and click on the OK button. Click the next button and a dialog
box like the one in Figure 1.4 will open.

Fundamentals 13

Figure 1.2 TradeStation 2000i—StrategyBuilder

www.fx1618.com



This dialog is informing us that there are two input variables for our sig-
nal. You can change the inputs now, but let’s wait until later. If you did want
to change the input values, you would simply select the Name of the input and
edit the Value. Right now, simply click the Next button. The Pyramiding dia-
log box opens and asks if you would like to add positions in the same direction.
Adding positions in the same direction occurs when our entry logic issues
another buy signal and we are already long. We know that we will buy at the
highest high of the past 40 days. This dialog is asking if we would like to con-
tinue adding positions at each subsequent 40 day high. If the market is trend-
ing, a new 40 day high could be made several times in succession. In this book,
we will almost always only take one position per trade signal.

Click on the Next button. The Position Information dialog now opens and
asks for the maximum number of open entries per position and the maximum
number of contracts/shares per position. Maximum number of open entries
per position limits the number of positions you can add as a result of pyramid-
ing. Maximum number of contracts/shares per position limits the number of
total contracts/shares that can be put on per position. The dialog box also asks
if you would like it to send a notification to the Tracking Center when our
strategy generates a new order. For now, let’s accept the default values for the

14 Building Winning Trading Systems with TradeStation

Figure 1.3 TradeStation StrategyBuilder—AddTE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



first two fields and make sure the box asking to send a notification to the
Tracking Center is checked and then click Next. The Data Referencing dialog
opens and asks for the maximum number of bars study will reference. Our
strategy only needs forty days of data to generate a signal. Remember, we are
looking back forty days to find the highest high and lowest low. Always keep in
mind how much data the strategy that you are working on requires and make
sure that you tell the computer, via this dialog box, that number. Make sure
there are 40 or more in the field and click finish. Congratulations, again! You
have just created your first strategy. Seems like a lot of work doesn’t it?
TradeStation is just making sure that all the parameters are correct before
testing a signal. Most of the time, these parameters don’t change and you can
simply click Next, Next, Next, Next, and finally, Finish without paying much
attention. Okay, now let’s apply our strategy. This book assumes the reader
knows how to create daily and intraday charts in TradeStation. Create a daily
bar chart of a continuous Japanese Yen contract going back 500 days. When
this chart has been plotted, go under the Insert menu and select Strategy. A
dialog box titled Insert Analysis Technique should open. Click on the Strategy
tab and select MyStrategy-1 from the list of available strategies and click on
OK. Another dialog box titled Format Strategy: MyStrategy-1 appears. Click
on the Inputs tab. You will see the two inputs that we have coded in our

Fundamentals 15

Figure 1.4 TradeStation StrategyBuilder—Input Values

www.fx1618.com



Donchian Break Out signal. By using the following line in our code, we have
given the user of the strategy, be it ourselves or someone else, the ability to
change the longLength and shortLength inputs of MySignal-1.

Inputs: longLength(40), shortLength(40);

You do not need to change the code to change the system from a 40- to a 50-
day Donchian Break Out strategy. These inputs can be edited at anytime;
before the analysis technique is inserted or after. You will notice that the val-
ues of these inputs default to those values that we had initiated when we pro-
grammed the signal in the PowerEditor. If you change these inputs from this
dialog, they do not permanently change; they will only change during this ses-
sion. If you want to change the inputs permanently, then change the value and
click on the Set default button. If you do change these inputs, always make sure
you change the maximum number of bars the analysis technique will reference para-
meter. You can do this by selecting the Properties tab in our dialog box and
changing the parameter. Let’s take a look at the Properties dialog. Click on the
Properties tab. Your dialog window should change and look like the one in
Figure 1.5.

16 Building Winning Trading Systems with TradeStation

Figure 1.5 Format Strategy—TradeStation 2000i

www.fx1618.com



This dialog box allows the user to observe and change the current prop-
erties for MyStrategy-1. We initialized these properties when we first created
the Strategy with the StrategyBuilder. You should be familiar with all of the
property parameters except for the back testing resolution. TradeStation
enables you to specify the resolution or data compression to use for back test-
ing your trading strategy. When you create a chart using data that has already
been collected, TradeStation must make certain assumptions about price
movement. If you are back testing on daily bars, TradeStation does not know
when the high or the low of the day was made. In some strategies, this infor-
mation may be important. TradeStation calculates the chronological order of
the high and low by using a formula. This formula is not always accurate and
may lead to inaccuracies. (This concept will be discussed in further depth in
Chapter 6, but for right now, let’s ignore this option.) Click on the Costs tab
and you will be presented with the Commission and Slippage $ values deducted
for each trade. We all know what commission is. Slippage is the dollar value
expected when the actual fill price minus the calculated fill price is calculated
on each trade. Slippage is either positive or negative; it is positive when you get
in at a better price and negative when you get in at a worse price. Most of the
time, slippage is negative. These costs can be charged on per contract/share
basis or on a per transaction basis. If you trade 300 shares of AOL, you can
have TradeStation charge a commission/slippage on each share or for the
entire trade. In addition, you will see the number of contracts/shares your
strategy will assume with each new trade signal. If you select Fixed Unit, then
this will be the fixed number of contracts/shares that will be traded through-
out an historic back test. If you choose Dollars per Transaction and type in a
value in the associated text box, the number of shares or contracts will be cal-
culated by dividing the input amount by the price of the stock or by the mar-
gin of the futures contract. Go ahead and accept all of the default values by
clicking the OK button.

Since MyStrategy-1 is a pure stop and reverse system, you will probably
get a New Open Position dialog box that states the Market position has changed
for JY. Let’s close this dialog box by clicking on the Close button. When this
dialog window disappears, there should be one underneath it titled New Active
Order. This dialog box lets you know that an order needs to be placed today. It
will either say Buy 1 at a certain price stop or Sell 1 at a certain price stop. We
need to learn more about the Tracking Center, so click on the Go to Tracking
Center button. You may get another dialog box that states: No Open Tracking
Center windows were found. Would you like to create one? Go ahead and click Yes.
Your Tracking Center should look similar to one in Figure 1.6.

Click on the Open Positions tab and you will see the symbol we are cur-
rently testing, current position, entry price, entry time, open profit, and vari-
ous other statistics. Click on the Active Orders tab and you should see a LE
(Long Entry) order to Buy 1 at a certain price stop and a SX (Short Exit) order

Fundamentals 17

www.fx1618.com



to Sell 1 at a certain price stop, if you are currently short. If you are currently
Long, you would see a SE (Short Entry) order to Sell 1 at a certain price stop
and a LX (Long Exit) order to Buy 1 at a certain price stop. In real life order
placement, you would simply place a single order to Buy/Sell 2 at whatever
price that was issued on a stop. Reduce this window and the chart of the Japan-
ese Yen with buy and sell signals should now be the only window on the screen.
If you like, you can go under the View menu and select Strategy Performance
Report and look at how well the system performed over the test period. We
will go much further in detail concerning the reports that TradeStation creates
for the analysis of Trading Strategies in Chapter 5.

TradeStation 6.0

PowerEditor

First off, TradeStation 6.0 must be running and online. Now, launch the Pow-
erEditor and create a new EasyLanguage document by going under the File
menu and selecting New. The PowerEditor can also be accessed through the
useful Shortcut Bar. Go under the View menu and make sure the Shortcut bar
is check marked. Once the bar is open, click on the EasyLanguage bar. All of
the options that are available to EasyLanguage documents are now at you dis-
posal. Figure 1.7 illustrates the Shortcut bar.

If you selected New from the File menu, a dialog box similar to the one
in Figure 1.8 should now be on your screen.

18 Building Winning Trading Systems with TradeStation

Figure 1.6 Tracking Center—TradeStation 2000i

www.fx1618.com



Fundamentals 19

Figure 1.7 TradeStation 6.0 Shortcut Bar

Figure 1.8 New Dialog Box—TradeStation 6.0

www.fx1618.com



After this dialog opens, click on the EasyLanguage tab and select the icon
titled Strategy and click OK. If you created a new EasyLanguage document
from the Shortcut bar, the preceding dialog box is skipped. We will ignore the
other tabs in this dialog box at this time. Another dialog box titled New Strat-
egy will open and ask for a name and notes about the strategy that you are cre-
ating. In the Name field go ahead and type “MyStrategy-1” and in the Notes
field type “Donchian Break Out”. In the Select Template field, leave it at none
and then click OK. A window titled TradeStation EasyLanguage PowerEditor—
MyStrategy-1: Strategy should open. You have successfully launched PowerEd-
itor. This is your clean sheet of paper on which to type your wonderful ideas.
Before we do some programming, let’s briefly take a look at some of the
menus. Now that PowerEditor is a component of TradeStation 6.0, the two
programs that were once separated are now combined and share the same
menus. We will only discuss the pertinent menus and menu items that apply to
the PowerEditor and EasyLanguage at this time.

Table 1.5 details the selections that are available under the File menu.
Table 1.6 details the selections under the Edit menu.
Table 1.7 details the selections under the View menu.
Table 1.8 details the selections under the Tool menu.

20 Building Winning Trading Systems with TradeStation

Table 1.5
File Menu

Menu Item Action

New Creates many different things—one of which is
a blank analysis technique.

Open EasyLanguage Document Opens an existing analysis technique.

Close Window Closes window.

Save EasyLanguage Document Saves the current analysis technique.

Save EasyLanguage Document As Allows renaming of the current analysis
technique.

SaveAs Template Saves the current analysis technique as a
template for future use.

Import/Export EasyLanguage Imports existing analysis techniques from other
sources or exports analysis techniques to other
sources. (Note: You can import from previous
versions, but you can’t export to previous
versions.)

Page Setup Allows changing of the page setup.

Print Prints the code.

Print Preview Shows what will be printed.

Exit Exits out of TradeStation platform.

www.fx1618.com



Fundamentals 21

Table 1.6
Edit Menu

Menu Item Action

Undo Undoes the last action.

Redo Redoes the last action.

Cut Cuts the selected text.

Copy Copies the selected text.

Paste Pastes the selected text.

Clear Clears the selected text.

Select All Selects all text in the analysis technique.

Find Finds a specific string of text.

Find Next Finds the next occurrence of the specified string
of text.

Replace Replaces a string of text with another string of
text.

Find in Files Powerful multifile search tool.

Table 1.7
View Menu

Menu Item Action

Order Bar Hides/shows the Order bar

Shortcut Bar Hides/shows the Shortcut bar

Status Bar Hides/shows the Status bar

Output Bar Hides/shows the Output bar. This little window
will become important when we begin
debugging.

EasyLanguage Preferences Sets the PowerEditor’s font, background color,
and syntax coloring.

Table 1.8
Tool Menu

Menu Item Action

Verify Verifies the analysis technique. Checks for
syntax errors in code.

Protect Document Protects code with password.

Easy Language Dictionary Inserts EasyLanguage Components into an
analysis technique.

www.fx1618.com



A Simple Program

Now that we are familiar with some of the menus and their functions, let’s code
a simple program. We don’t need to know everything about the selections in
the menus to start coding. Type the following text exactly as you see it here:

Inputs: longLength(40), shortLength(40);

Buy tomorrow at Highest(High,longLength) stop;
Sell Short tomorrow at Lowest(Low,shortLength) stop;

After you have typed this in, go under the Tools menu and select Verify
or press F3. You should get a small dialog box that first says Verifying and then
Verification Successful. If you get an error, simply check your code for any typos
and Verify again. Congratulations, you have just written an analysis technique
in the form of a strategy! Now let’s break each line of code down so that we can
fully understand what is going on.

Inputs: longLength(40), shortLength(40);

By typing this line you have created two constant variables of the numeric data
type. These two variables, longLength and shortLength, have been initiated
with the value of 40. These variables cannot be changed anywhere in the body
of the analysis technique. They can be changed from the user interface of this
signal or in the program header. These will be discussed later in this chapter.

Buy tomorrow at Highest(High,longLength) stop;

This line instructs the computer to place a buy stop tomorrow at the highest
high of the last forty days. Highest is a function call. Functions are subpro-
grams that are designed for a specific purpose and return a specific value. To
communicate with a function, you must give it the information it needs. An
automatic teller machine is like a function; you must give it your PIN before it
will give you any money. In the case of the Highest function, it needs two bits
of information: what to look at and how far to look back. We are instructing
this function to look at the highs of the last 40 bars and return the highest
of those highs. When an order is instructed through EasyLanguage, you must
tell the computer the type of order. In this case, we are using a stop order.
Orders that are accepted by EasyLanguage are:

• Stop. Requires a price and is placed above the market to buy and below
the market to sell.

• Limit. Requires a price and is placed below the market to buy and
above the market to sell.

• Market. Buys/sells at the current market price.

22 Building Winning Trading Systems with TradeStation

www.fx1618.com



So, if the market trades at a level that is equal to or greater than the highest
high of the past forty days, the signal would enter long at the stop price.

Sell Short tomorrow at Lowest(Low,shortLength) stop;

The instructions for entering a short position are simply the opposite for
entering a long position.

For those of you who are moving from TradeStation 2000i to 6.0, you
will be pleasantly surprised by the elimination of the StrategyBuilder. Version
6.0 creates strategies on the fly by accepting default values for the strategy’s
properties. For those of you who are not familiar with the StrategyBuilder, it
was an additional component that required the user to click through several
dialog boxes and change property values before one could create a strategy.
Most of the time the default values were sufficient and this was an act of futil-
ity. Version 6.0 allows the strategy properties to be changed when needed.

This book assumes the reader knows how to create daily and intraday
charts in TradeStation. If you are not sure how to do this, we refer you to your
TradeStation manual. Create a daily bar chart of the Japanese Yen going back
500 or more days. When this chart has been plotted, go under the Insert menu
and select Strategy. A dialog box titled Insert Analysis Techniques and Strategies
should open and look similar to the one in Figure 1.9.

Fundamentals 23

Figure 1.9 Insert Analysis Techniques and Strategies

www.fx1618.com



This dialog box is very informative: It lists the different strategies and also
informs the user if the strategy has been verified and if the strategy has a long
entry, short entry, long exit, and short exit. Scroll through the list until you
find MyStrategy-1. You will notice that the boxes under the Long Entry and
Short Entry column headings are checked, but the boxes underneath the Long
Exit and Short Exit are not. This tells us that the system only enters the mar-
ket; it is never flat—the system is either long or short. Long positions are liq-
uidated when a short position is initiated and vice versa. Our simple Donchian
Break Out is a pure stop and reverse system. You will also notice a small check
box titled Prompt for Format. Make sure this box is checked and then select
MyStrategy-1 from the list of available strategies and click on OK. Another
dialog box titled Format Strategy appears and should look similar to Figure
1.10.

Click on the Inputs button. You will see the two inputs that we have coded
in our Donchian Break Out strategy. By using the following line of code, we
have given the user of the strategy, be it ourselves or someone else, the ability
to change the longLength and shortLength inputs of MyStrategy-1.

Inputs: longLength(40), shortLength(40);

24 Building Winning Trading Systems with TradeStation

Figure 1.10 Format Strategy

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



You do not need to change the code to change the system from a 40- to a 50-
day Donchian Break Out. These inputs can be edited at anytime; before the
analysis technique is inserted or after. You will notice that the values of these
inputs default to those values that we had initiated. If you change these inputs
from this dialog, they do not permanently change; they will only change dur-
ing this session. You can permanently change the default input values for
MyStrategy-1 by changing the values and then clicking on the Set Default
button. If you do change these inputs, always make sure you change the
maximum number of bars the analysis technique will reference parameter. We will
show you how to reference this parameter when we discuss the Format dialog
box. You will notice that there are several other buttons in this dialog box,
however we will ignore these for now and accept our Inputs as they are by
clicking on the OK button. Click on the Format button. A dialog box should
open titled Format Strategy. It should look like Figure 1.11.

You will notice several different parameters that TradeStation takes into
account when testing a strategy. Let’s examine each option and its purpose.

Fundamentals 25

Figure 1.11 Format Strategy—After Selecting Format

www.fx1618.com



Commission per share/contract $: The dollar value that will be deducted
from each trade as a commission charge. Let’s set this to $0.

Slippage per share/contract $: The dollar value that you expect the strategy
will be slipped on each trade. Slippage is the actual fill price minus the
calculated fill price. Slippage is either positive or negative; it is positive
when you get in at a better price and negative when you get in at a
worse price. Most of the time, the slippage is negative. Let’s set this
to $0.

Trade size (if not specified by strategy)
Fixed Unit: The number of shares or contracts that are put on at the ini-

tiation of a trade. Change this value to 1, if it isn’t already so.
Dollars per Transaction: The fixed dollar value used to determine the num-

ber of shares/contracts. Trade size is calculated by dividing the price of
the instrument into this value.

Go ahead and click OK and you return to the Format Strategy dialog box.
Before we close this dialog and proceed with the application of the strategy to the
chart, make sure the Generate strategy orders for display in Account Manager’s Strat-
egy Order Tab check box is checked. Since MyStrategy-1 is a pure stop and
reverse system, you will get a Strategy New Order or a Strategy Active Order dia-
log box that states that you should buy or sell short at a certain price. If one of
these dialog boxes does indeed open, just close it by clicking on the Close button.

We need to learn more about the Account Manager and Strategy Track-
ing. Go to the File menu and select New. A dialog window should open and
look similar to the one that we saw when we created a new strategy. However,
this time, click on the Tools tab. Click on the Account Manager and Strategy
Testing icon. We could have accomplished this by using the Shortcut bar.
Instead of clicking on the EasyLanguage bar, we would have clicked on Tools
and then proceeded to click on the Account Manager and Strategy Testing
icon. We have simply fallen in love with the Shortcut bar. Once you click
the icon, a window like the one in Figure 1.12 will open.

This window keeps track of all real orders and positions (if you have an
actual trading account with TradeStation securities) and all simulated orders
and positions. Since we are working with simulated trades that were generated
by our strategy, click on the Strategy Positions tab. Your window will change
and should look like the one in Figure 1.13.

This spreadsheet shows the symbol we are currently testing, current strat-
egy position, entry price, entry time, and various other statistics. Click on the
Strategy Orders tab and your window will change to look like the one in Fig-
ure 1.14.

Since our strategy is in the market all of the time, you will have two
rows (possibly more if you are currently tracking more than one system) of

26 Building Winning Trading Systems with TradeStation

www.fx1618.com



Fundamentals 27

Figure 1.12 Account Manager and Strategy Tracking—Today’s Orders

Figure 1.13 Account Manager and Strategy Tracking—Strategy Positions

www.fx1618.com



information. The top row will be the order to initiate a new position and the
second row will be the order to cover the existing position. If the order is a stop
order, the stop price will be located under the Stop header. If it is a limit order,
the limit price will be under the Limit header. If today’s market action causes
a fill to occur, the fill price will be under the Filled header. You will notice
other tabs in the Account Manager window. These tabs are used only if you
have an account set up at TradeStation’s brokerage company. Basically, these
other tabs give the same information as the Strategy tabs, but with real execu-
tion statistics. You can use TradeStation 6.0 without a trading account, but you
will need to keep track of your real live positions and fills yourself. This in no
way takes away from the back testing and research capabilities of this product.

Reduce this window and the chart of the Japanese Yen with buy and sell
signals will now be the only window on the screen. If you like, you can go
under the View menu and select Strategy Performance Report and look at
how well the system performed over the test period. We will go in much fur-
ther detail concerning the reports that TradeStation creates for the analysis of
Trading Strategies in Chapter 5.

28 Building Winning Trading Systems with TradeStation

Figure 1.14 Account Manager and Strategy Tracking—Strategy Orders

www.fx1618.com



CONCLUSIONS

The objective of this chapter is to introduce the fundamentals necessary to
become productive EasyLanguage programmers. We discussed data types,
expressions, and statements. We reviewed how to declare variables and inputs,
call built-in functions, and verify (compile) our code. In addition, we can cre-
ate a strategy from a simple signal and insert that strategy into a chart. In the
next chapter, we will build upon this foundation and create much more com-
plex programs (analysis techniques in EasyLanguage vernacular).

Fundamentals 29

www.fx1618.com



30

2

EasyLanguage
Program Structure

STRUCTURED PROGRAMMING

Structured programming was introduced in the early 1970s. This concept
stressed breaking a program down into manageable modules and then con-
necting those modules together into a coherent and logical flow of instruc-
tions. We know that the readers of this book will probably not become
professional programmers, but structured programming is necessary for the
accurate transfer of ideas into action. Any time you add structure to anything,
you are always better off. EasyLanguage was developed as an easy-to-learn
language for traders. It was not intended to produce professional program-
mers, but instead to get traders to write some simple programs. Through our
years of programming with EasyLanguage, we have discovered that most
analysis techniques programs can be broken down into three different mod-
ules: a program header, a calculation module, and an order placement module.
This modularization is not necessary to program analysis techniques. In fact,
since EasyLanguage has so many shortcuts, many programmers prefer quick
and dirty “spaghetti” code (code that is as disorganized as a plate of spaghetti).
This quick programming is fine for simple brainstorming, but when your
analysis techniques become complicated, structured programming will save
you time in the long run. It is also necessary for debugging purposes and you
will be doing some debugging.

www.fx1618.com



PROGRAM HEADER

The header of an EasyLanguage program is the portal for communication
between the internals of the program and the outside world. As in Chapter 1,
the Input statement allows the user of the analysis technique to modify partic-
ular parameters without having to rewrite and reverify the technique. The
header also declares and initializes variables that will be used later in the analy-
sis technique. This is the starting point of our structured program. The pro-
gram header is an excellent place to describe the objective of our programming
through the use of comments. The following is a good example of a structured
program heading:

{MyRsiSystem – trading strategy by George Pruitt 09/24/2001

Version 1.00 initial testing of my idea
Version 1.01 added RSI retracement component
Version 1.02 added trailing stop mechanism
Version 1.03 changed the over bought/sold parameter

This trading signal is designed to buy when the RSI has dipped into the oversold
territory and sells when the RSI has risen into overbought territory. Once a
position is initiated an initial money management stop is invoked and then a
trailing stop takes over after a certain threshold of profit is attained.}

Inputs: rsiLength(14), overSold(40), overBought(60), moneyManStop(1000);
Vars: myRsiVal(0),longProtStop(0),shortProtStop(99999),obCount(0),osCount(0);
Vars: longProfitStop(99999),shortProfitStop(0),takeProfitStop(2000);

The header starts out with the name of the analysis technique, the author, and
the date. Notice that remarks or comments are sandwiched between curly
brackets ({}). The curly brackets inform the compiler to ignore these state-
ments. These brackets can also be used to “comment out” code that you may
want to keep in your program, but don’t want to necessarily use at this time.
Keeping track of changes is always important, especially when designing trad-
ing techniques. There have been a number of times that we have come up with
a good basic idea, only to forget and lose it after we have changed it umpteen
times. If we had only kept track of the revisions, we could get back to the orig-
inal idea. In this program header, we have recorded the additions and changes
by applying different version numbers. This is similar to the method that large
software companies incorporate into their own software development. A sim-
ple explanation of the analysis technique follows. After you have developed
many different strategies, indicators, and so on, it becomes difficult to differ-
entiate your ideas by simply looking at the name of the analysis technique. By
putting a brief description of the analysis technique at the top of your program,

EasyLanguage Program Structure 31

www.fx1618.com



you can quickly figure out what this particular program is attempting to do.
This is also helpful if you are going to share the code with others. Most pro-
grammers hate to put comments in their code; they feel that it is a big waste of
time. Most traders are programming for themselves and do not need to share
their code with others. This may be the case, but we all need reminders and
explanations of our ideas, especially after some time has elapsed. This type of
program heading is appropriate for any analysis technique; be it a Strategy,
PaintBar, Indicator, or ShowMe.

Since we are discussing readability, you should always save your analysis
techniques with good, self-descriptive names. Saving an idea under the name of
MyTradingSys1 will create confusion. After a couple of weeks of coding, we
guarantee you will forget the main theme behind MyTradingSys1. Reusing
code is one of the main reasons for building a library and if you don’t label your
ideas correctly, you will waste time searching for them. It would be like trying
to find a book in a large public library without the card catalog. Some good
files names that give a general idea of what code is designed to do are: MyR-
SIsystem, BreakOutSys, ChannelStrat, MyStochIdea, or BollingerTrader.

The Inputs and Vars declaration statements come next. Notice how the
inputs and variables are named; they all are self-descriptive.

CALCULATION MODULE: MYRSISYSTEM

This module is where the variables and inputs are put to work. When we talk
about modules, we mean a grouping of similar code. A module isn’t a function
or a subroutine; they could be, but in our examples, modules are just separate
areas of code. By separating the code, we can easily read and understand the
thought process that went into the coding. Take a look at the following snip-
pet of code from the calculation module of the MyRSIsystem.

myRsiVal = RSI(close,rsiLength);
if (myRsiVal > overBought and myRsiVal[1] < overBought) then
begin

obCount = obCount + 1;
osCount = 0;

end;
if (myRsiVal < overSold and myRsiVal[1] > overSold) then
begin

osCount = osCount + 1;
obCount = 0;

end;

You may not fully understand what is going on at this point. That’s okay. There
are a few important ideas that are introduced in this code that we really do need

32 Building Winning Trading Systems with TradeStation

www.fx1618.com



to understand before we can go on, and we will explain them completely. Before
we explain these new concepts, notice how we indented some of the program
statements. This is for readability. If a particular statement controls the execu-
tion of a line or lines of code, then those lines should be indented so that it is
easy to see which statements control which statements. Notice that the lines of
code that start with osCount and obCount are indented. The if-then statements
control the execution of these lines of code. Again, these indentations are not
necessary; it just makes your code easier to read and to understand. We will dis-
cuss program control structures in Chapter 3.

The statement myRsiVal = RSI(close, rsiLength) calls a built-in Easy-
Language Relative Strength Index (RSI) function. The RSI function returns a
value based on your inputs. In this case, we instruct EasyLanguage to calculate
the RSI on the past 14 days’ closing prices. (We introduced the concepts of
functions in Chapter 1.)

A function is called by simply typing the function name (in this case, RSI)
and passing the necessary inputs or parameters to it. Passing values to functions
is quite simple. First, type the name of the function and a left parenthesis, and
the necessary parameters separated by commas and a right parenthesis. The
first parameter we pass to the RSI function informs the function to use
the closing prices. The second parameter that we pass informs the function to
use the past 14 days. Before you call a function, you must know the number of
parameters, the type of parameters, and the exact order of the parameters that
the function is expecting. (There is a list of frequently used functions and their
parameter lists in Appendix A.) If you do not pass the correct parameters to a
function, you will either end up with a syntax or logical error. A syntax error is
generated when the compiler does not understand what it is being told. The
following function call will generate a syntax error: myRsiVal = RSI(Close); .
The compiler will inform you that more inputs are expected.

In Chapter 1, we discussed the reserved words that you can use to gain
access to the bar chart data (Open, High, Low, Close, etc.), and how we are able
to reference historical prices by adding an index into the reserved words. You
can do the same thing with your own defined variables. If you want to look at
the value of a variable on the previous bar, all you have to do is add the index.
In the earlier sample code, notice how the previous bar’s RSI value was com-
pared to the overBought value:

myRsiVal[1] < overBought.

If you wanted to look at the RSI value of five bars back, you would type myR-
siVal[5]. This is a powerful feature of EasyLanguage; it keeps track of the pre-
vious values of your variables so that you can access them anytime you need to.
There is one limitation; EasyLanguage will only remember the number of bars
that is specified by the MaxBarsBack setting. If you set the MaxBarsBack

EasyLanguage Program Structure 33

www.fx1618.com



setting to 10, and you try to reference myRsiVal[11] (11 days back), you will
not receive an accurate result.

The following code shows how we have modularized the order placement
code:

{Order Placement Module}

if(obCount = 2) then SellShort tomorrow at open; {We have entered OB twice}
if(osCount = 2) then Buy tomorrow at open; {We have entered OS twice}

if(marketPosition = 1) then
begin

Sell ("longLoss")next bar at longProtStop on a stop;
Sell ("longProfit")next bar at longProfitStop on a limit;

end;
if(marketPosition = –1) then
begin

BuyToCover ("shortLoss")next bar at shortProtStop on a stop;
BuyToCover ("shortProfit")next bar at shortProfitStop on a limit;

end;

Notice how the entry orders and exit order calculations are placed in their
respective groups. This makes it easier to go to the exact location in the code
without having to hunt and search. Again, don’t worry about what we are try-
ing to accomplish in this code, just try to teach yourself how to program and
think in modules. The order of these buy and sell orders is not important,
because TradeStation evaluates the orders simultaneously. Many times you
may have more than one order working. In our example, the number of work-
ing orders depends on our current position. If we are long, then we have a
short entry order, and two long exit orders. This is the same for a short posi-
tion. If we are flat, then we have only one entry order working based on our
osCount variable. To enter long, our osCount variable must be equal to 2 and
to enter short, our obCount must be equal to 2 also. TradeStation only exe-
cutes the order that is closest to the market.

Now let’s look at MyRsiSystem in its entirety:

{MyRsiSystem - trading strategy by George Pruitt 09/24/2001

Version 1.00 initial testing of my idea
Version 1.01 added RSI retracement component
Version 1.02 added profit objective mechanism
Version 1.03 changed the over bought/sold parameter

This trading signal is designed to buy when the RSI has double dipped into
the oversold territory and sells when the RSI has doubly risen into

34 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



overbought territory. Once a position is initiated an initial money
management stop and profit objective stop is invoked.}

Inputs: rsiLength(14), overSold(40), overBought(60), moneyManStop(1000);
Vars: myRsiVal(0),longProtStop(0),shortProtStop(99999),obCount(0),osCount(0);
Vars: longProfitStop(99999),shortProfitStop(0),takeProfitStop(2000);
{Calculation Module}

myRsiVal = RSI(close,rsiLength);
if(myRsiVal > overBought and myRsiVal[1] < overBought) then
begin

obCount = obCount + 1;
osCount = 0; {Reset the OS counter since we are OB}

end;
if(myRsiVal < overSold and myRsiVal[1] > overSold) then
begin

osCount = osCount + 1;
obCount = 0; {Rest the OB counter since we are OS}

end;

if(marketPosition = 1) then
begin

longProtStop = entryprice – (moneyManStop/PointValue/PriceScale);
longProfitStop = entryprice + (takeProfitStop/PointValue/PriceScale);
osCount = 0; {Since we are long – reset the OS counter}

end;
if(marketPosition = –1) then
begin

shortProtStop = entryprice + (moneyManStop/PointValue/PriceScale);
shortProfitStop = entryprice – (takeProfitStop/PointValue/PriceScale);
obCount = 0; {Since we are short – reset the OB counter}

end;

{Order Placement Module}

if(obCount = 2) then Sell Short tomorrow at open; {We have entered OB twice}
if(osCount = 2) then Buy tomorrow at open; {We have entered OS twice}

if(marketPosition = 1) then
begin

Sell ("longLoss")next bar at longProtStop on a stop;
Sell ("longProfit")next bar at longProfitStop on a limit;

end;
if(marketPosition = –1) then
begin

BuyToCover ("shortLoss")next bar at shortProtStop on a stop;
BuyToCover ("shortProfit")next bar at shortProfitStop on a limit;

end;

EasyLanguage Program Structure 35

www.fx1618.com



It is easy to see the different “modules.” Also, notice how we have used com-
ments to help explain the purpose of different statements. As a sidebar, the
EasyLanguage compiler is not case sensitive: obcount is the same as
obCOUNT, ObcOuNt, OBCOUNT, and so on. This applies to all variables,
keywords, function names, and inputs. We have a certain nomenclature when
it comes to using upper and lowercase letters that we follow when we create
variables. Most of the time we type in lowercase and only use uppercase at the
beginning of functions names and variables that deal with the data: Open, High,
Low, Close, Volume, Date, and Time. As explained in Chapter 1, we also use
uppercase letters at the beginning of a new syllable (other than the first) in our
own variable names. We do this to differentiate our variables from built-in
keywords and functions. Also, if you type this system or import it into the
PowerEditor, you will notice that some of the words are different colors. This
is a fantastic feature of the PowerEditor; syntax coloring can save you many
hours of debugging and research time. EasyLanguage has a vast library of key-
words and functions and it would be impossible to memorize them all. In the
default settings of the PowerEditor, reserved words and function names have
a different color than normal text. With syntax coloring, you can guess at a
name and if it is a valid reserved word or function name, it will turn a different
color. Many times I will need to call a function, but I can’t remember the
exact name, so I will type what I think the function name should be and if it
doesn’t turn a different color than the normal text, I try again. For some rea-
son, I can never remember the exact name for the average true range function.
I always type “averageTrueRange” and it never turns a different color. I then
try “avgTrueRange” and it does turn and I know that I have the correct name.
The EasyLanguage preferences dialog box allows you to customize the color of
comments, reserved words, functions, skip words, quote fields, and string text.
Set these types of words to a different color than normal text. Now, let’s look
at the same code in a nonmodular format and without comments. You deter-
mine which code is easier to interpret.

{MyRsiSystem - trading strategy by George Pruitt 09/24/2001}
{Spaghetti Code}

Inputs: rsiLength(14), overSold(40), overBought(60), moneyManStop(1000);
Vars: myRsiVal(0),longProtStop(0),shortProtStop(99999),obCount(0),osCount(0);
Vars: longProfitStop(99999),shortProfitStop(0),takeProfitStop(2000);

myRsiVal = RSI(close, rsiLength);

if(osCount = 2) then buy tomorrow at open;

if(marketPosition = 1) then
begin

longProtStop = entryprice – (moneyManStop/PointValue/PriceScale);

36 Building Winning Trading Systems with TradeStation

www.fx1618.com



longProfitStop = entryprice + (takeProfitStop/PointValue/PriceScale);
osCount = 0;

end;
if(obCount = 2) then sell short tomorrow at open;
if(marketPosition = –1) then
begin

shortProtStop = entryprice + (moneyManStop/PointValue/PriceScale);
shortProfitStop = entryprice – (takeProfitStop/PointValue/PriceScale);
obCount = 0;

end;
if(marketPosition = 1) then
begin

Sell ("longLoss")next bar at longProtStop on a stop;
Sell ("longProfit")next bar at longProfitStop on a limit;

end;
if(marketPosition = –1) then
begin

BuyToCover ("shortLoss")next bar at shortProtStop on a stop;
BuyToCover ("shortProfit")next bar at shortProfitStop on a limit;

end;

if(myRsiVal > overBought and myRsiVal[1] < overBought) then
begin

obCount = obCount + 1;
osCount = 0;

end;
if(myRsiVal < overSold and myRsiVal[1] > overSold) then
begin

osCount = osCount + 1;
obCount = 0;

end;

We think you will agree that the modular version was much clearer. Since the
compiler evaluates statements from top to bottom and one line at a time, cer-
tain variables may need to be altered before an order is placed. Modularization,
in addition to improved readability, adds correct logic flow to your programs.
We will use the modular version of this system in Chapter 3 to help explain
EasyLanguage programming. By the time we are through, you will fully under-
stand every line of code in this system and be able to use the concepts to build
your own analysis techniques from scratch.

CONCLUSIONS

The most important concept learned in this chapter is modular programming.
An accurate program (analysis technique) is constructed by using individual

EasyLanguage Program Structure 37

www.fx1618.com



building blocks. In our case, the building blocks are sections or modules of
code that are utilized to improve readability and correctness. In addition, we
discussed that built-in and user-defined variables can be indexed to look back
at previous values. Remember that PowerEditor is user-friendly, is not case
sensitive, and recognizes important reserved words and function names
through the use of syntax coloring. The next chapter will tear MyRSIsystem
apart and introduce and explain some important programming concepts.

38 Building Winning Trading Systems with TradeStation

www.fx1618.com



39

3

Program Control
Structures

The least complicated programs start at the top of the program block and exe-
cute each statement in order and stop after the last statement. A very simple
and straightforward strategy is illustrated by our very first strategy from Chap-
ter 1:

Inputs: longLength(40), shortLength(40);
Buy tomorrow at Highest(High,longLength) stop;
Sell Short tomorrow at Lowest(Low,shortLength) stop;

Most trading ideas can rarely be expressed in such simplistic terms. This strat-
egy does not take into account a protective or trailing stop, profit objective, or
any other exit mechanisms. It’s not that a simple approach can’t work (most of
the time they work best), but trading ideas can be complex and involved.

CONDITIONAL BRANCHING WITH IF-THEN

You can make your programs as complex as you need to by using control struc-
tures. These structures give programs the ability to react differently under dif-
ferent situations; based on information provided to it, a program can choose
between different avenues of logic to follow. In other words, your program
must make a decision. Decision processing requires three bits of information:
(1) what information is used, (2) how to evaluate the information, and (3) what
to do after the decision. This type of programming is called conditional branch-
ing, because the flow of your program will branch in different directions after

www.fx1618.com



a logical condition is evaluated. Conditional branching is a form of a control
structure. By adding conditional branching to the earlier strategy, it has the
ability to liquidate a position with a different exit. Let’s add the code that will
exit a long/short position after five or more trading days if the position is not
profitable.

Inputs: longLength(40), shortLength(40);
Buy tomorrow at Highest(High,longLength) stop;
Sell Short tomorrow at Lowest(Low,shortLength) stop;

If(marketPosition = 1 and barsSinceEntry(0) > = 5 and Close < entryPrice) then
Sell("LongLoss5Days) on this bar close;

If(marketPosition = –1 and barsSinceEntry(0) > = 5 and Close > entryPrice) then
BuyToCover("ShortLoss5Days) on this bar close;

This small addition of code has introduced a new concept, reserved word,
and function. Before we explain exactly what is going on behind the scenes of
this new code, let’s learn the concept of the conditional branching control
structure. The brain behind conditional branching is the conditional expres-
sion, or Boolean expression. A conditional expression is any expression that
results in either a true or false condition.

Condition statements consist of the comparison between one or more
values. You can have direct comparisons:

myProfit > 1200
myRsi <= 20
close[1] > close[2]

or you can have comparisons based on calculations:

myProfit >= entryPrice + 1200
close[1] > close[2] + (high[2] – low[2])

or you can have multiple comparisons:

marketPosition = 1 and barsSinceEntry(0) >= 5 and close < entryPrice
(myRsiVal > overBought and myRsiVal[1] < overBought)

All conditional expressions reduce down to a left side value that is com-
pared to a right side value using a logical operator. Remembering the operators
learned in school:

> Greater than
< Less than
>= Greater than or equal to

40 Building Winning Trading Systems with TradeStation

www.fx1618.com



<= Less than or equal to
= Equal to
<> Not equal to

These operators can be used to compare any two expressions when the
two items being compared are compatible. You would not want to compare a
string value to a numerical value or a string value to a logical value. Simple
expressions are easy to understand. For example, (myRsi > 20) is clearly under-
stood to mean myRsi value is greater than 20. Since we are human and traders
(smarter than the average person, right?), most of our thought processes are
not this simple. For this reason, EasyLanguage has provided the or operator
and the and operator. Most of the time we will use these operators in the form
of logical operators; we will use them for comparison purposes. They can also
be used in the form of arithmetic operators, but for our purposes we rarely do
this. To fully understand these operators, you must understand the following
truth table.

Value1 Value2 AND result OR result
True True True True
True False False True
False True False True
False False False False

Here are some examples of how conditional statements are evaluated. Take the
following variable assignments:

myValue1 = 10;
myValue2 = 7;
myValue3 = 3;

Now based on the previous truth table, the following condition statements
evaluate to either true or false:

myValue1  = 10 and myValue2 = 7                        True
myValue1  = 10 or myValue2 = 4                         True
myValue1  = 10 and myValue3 = 6                        False
myValue1 >= 10 and myValue2 <= 7                       True
myValue1  = 10 and (myValue2 = 6 or myValue2 = 7)      True

The last statement may throw you at first. But, remember back in Chapter 1
when we discussed the precedence of operators and how parentheses can
change their order. In this example, we have True and (False or True), which
reduce down to True and True. We first evaluate the information inside the
parentheses and then do the next comparison. Inside the parentheses, we have

Program Control Structures 41

www.fx1618.com



False or True, which is True. We then compare True and True and as we all
know this is true.

The if-then statement is the simplest form of conditional branching. This
statement causes the program to execute a single statement or a block of code
if a condition is true. When the compiler first encounters an if-then statement,
it evaluates the information that is provided by the conditional statement. The
evaluation produces one of two possible results—true or false. If the statement
is true, the line or block of code immediately following the if-then is executed.
If the result is false, the program skips the line or block entirely. The if-then
construct has the following syntax (syntax are the rules governing which state-
ments and combinations of statements in a programming language will be
acceptable to a compiler for that language):

if(conditional statement) then [single statement];
if(conditional statement) then
begin

[multiple statements]
end;

You must always include the word then after the if conditional statement. The
parentheses around the conditional statement(s) are optional, but they do help
in clarification. If you want more than one statement to be executed after a
conditional branch, you must use the words begin and end. Begin marks the
beginning point of the block of code and end literally marks the end of
the block of code. Semicolons are not placed after the keywords then or begin.
Referring back to the code that we added to MyStrategy-1:

If(marketPosition = 1 and barsSinceEntry(0) >= 5 and close < entryPrice) then
Sell("LongLoss5Days") on this bar close;

If(marketPosition = –1 and barsSinceEntry(0) >= 5 and close > entryPrice) then
BuyToCover("ShortLoss5Days") on this bar close;

Here, the if-then control structure liquidates our position if the position is not
profitable after five or more trading days. The program tests our position on a
daily basis after the fourth trading day and it will liquidate it if a closing price
results in negative equity. You may look at the code and ask, “How do we know
the number of days we have been in a trade?” Thanks to the vast library of
EasyLanguage, we have a built-in function that can tell us this information.
The function barsSinceEntry returns the number of days that we have been in
a position. Remember, most functions need to be passed some type of infor-
mation; barsSinceEntry is similar in that it needs to know which position we
are talking about. In this particular case, we want the most recent position. By
passing a zero to the function, it knows that we need information pertaining to
the latest position. If we had passed a 1, then we would have received informa-

42 Building Winning Trading Systems with TradeStation

www.fx1618.com



tion about the previous position. You may have been surprised that this was a
function call. We didn’t assign the return value of the function to a variable
(i.e., we didn’t say something equals the call to the function). We simply eval-
uated the function in an arithmetic expression. Functions can be used in assign-
ments, comparisons, or arithmetic expressions. In other words, functions are
like variables whose values are based on the parameters that are passed to them.
You may then ask, “How do we know if we are in a long position or a short
one?” Again, we refer to the EasyLanguage library and use the function mar-
ketPosition to determine our position. This function returns our current and
previous positions based on the value that we pass it. If we had wanted our
prior position, we would have passed a number one to the function: market-
Position(1). The marketPosition function will only return three different val-
ues: 1 for a long position, –1 for a short position, and 0 for a flat position. Now,
let’s go back to the code. Notice how the if-then structure alters the flow of the
program. The liquidation orders are not issued unless we pass the test (logical
condition). In order to pass the test in this case, three criteria must be met: (1)
we have a position, (2) we have been in the trade for five or more days, and (3)
the close of the day puts us into a losing position. Since we are using and, all of
the conditional statements must evaluate to True before we can execute the
line that immediately follows the if-then statement. If we had used logical or,
then only one of the conditional statements would need to be true.

CONDITIONAL BRANCHING WITH IF-THEN-ELSE

The if-then statement provides only a single branch. Many times a program
requires two branches: one branch that executes if True, the other if False.
This type of conditional branching can be accomplished by using the if-then-
else statement. If an evaluation of a conditional statement is True, the line or
block of code that follows the then statement is executed. If the evaluation is
False, the line or block of code that follows the else statement is executed. The
syntax for the if-then-else is:

if(conditional statement) then [single statement]
else [single statement];

if(conditional statement) then
begin

[multiple statements]
end;
else
begin

[multiple statements]
end;

Program Control Structures 43

www.fx1618.com



Notice that a semicolon is not used after a statement that precedes an else
statement. If one is added, it will cause a syntax error. Let’s incorporate our
newly found knowledge into MyStrategy1. The following code causes our pro-
gram to make a decision based on the number of days we have been in the
trade. If we have been in the trade for less than five days, then we want to exit
a long/short position on the lowest low/highest high of the past ten days. After
we have been in the trade for five days or more, we will revert back to our pre-
vious exit strategy (come out of a losing position on the close after five days).

if (marketPosition = 1) then
begin

if(barsSinceEntry(0)<5) then
begin

Sell("LongLoss") next bar at Lowest(low,10) stop;
end
else
begin

if(close<entryPrice) then Sell("LongLoss5Days") on this bar
close;

end;
end;
If (marketPosition = –1) then
begin

if(barsSinceEntry(0)<5) then
begin

BuyToCover("ShortLoss") next bar at Highest(high,10) stop;
end
else
begin

if(close<entryPrice) then BuyToCover("ShortLoss5Days") on this
bar close;

end;
end;

Notice how in the last else block we didn’t have enough room to put the entire
statement on one line. Sometimes your statements will be too long to fit on
one line of your screen. You can continue on as many lines as you need. The
following statements are syntactically correct and should give you no problems
during verification (compilation).

myValue1 = myValue2 +
myValue3;

myValue1 = (close + high + low )/ 3 + Highest(high,numDaysBack) – 
Lowest(low,numDaysBack);

myValue1 =
myValue2 +

44 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



myValue3 +
myValue4;

This is the beauty of having a line determination symbol (e.g., a semicolon).
The compiler in EasyLanguage ignores all blank lines and spaces from the
beginning of a statement to the semicolon. You can have 20 blank spaces or 20
blank lines. Our snippet of code not only exemplifies the if-then-else state-
ment, but it also shows the concept of nested if-then statements. The if-then
statements are separately located (nested) inside the scope (the boundaries of
the statements that are controlled by the control structure) of the if(market-
Position = 1)-then statement:

If (marketPosition = 1) then
begin

if(barsSinceEntry(0)<5) then ← nested if-then
begin

Sell("LongLoss") next bar at Lowest(low,10) stop;
end
else
begin

if(close<entryPrice) then Sell("LongLoss5Days") on this bar
close;

end;
end;

With nested if-then statements, you can make your programs as complicated as
you need. Now that we have an understanding of conditional branching, let’s
go back to the system that we introduced in Chapter 2 and see if we can under-
stand what is going on. We will break up each module and explain what each
statement is trying to accomplish:

{MyRsiSystem - trading strategy by George Pruitt 09/24/2001

Version 1.00   initial testing of my idea
Version 1.01   added RSI retracement component
Version 1.02   added profit objective mechanism
Version 1.03   changed the over bought/sold parameter

This trading signal is designed to buy when the RSI has double dipped into
the oversold territory and sells when the RSI has doubly risen into
overbought territory. Once a position is initiated an initial money
management stop and profit objective stop is invoked.}

Inputs: rsiLength(14), overSold(40), overBought(60), moneyManStop(1000);
Vars: myRsiVal(0),longProtStop(0),shortProtStop(99999),obCount(0),osCount(0);
Vars: longProfitStop(99999),shortProfitStop(0),takeProfitStop(2000);

Program Control Structures 45

www.fx1618.com



We know that the program header is declaring and initializing the variables
that we will need in the program. Since we are operating in one big loop, for
each bar (daily or intraday) the following code is evaluated. First, we assign the
myRsiVal variable the RSI value for this bar based on the closing price and a
14-bar period. This is simply a function call.

{Calculation Module}
myRsiVal = RSI(close,rsiLength);
if(myRsiVal > overBought and myRsiVal[1] < overBought) then
begin

obCount = obCount + 1;
osCount = 0; {Reset the OS counter since we are OB}

end;

After we get the current RSI value and store it in myRsiVal, we then test and
compare it along with the previous bar’s RSI value (remember how to do
this?—we simply index the variable) against our overbought input parameter.
Referring back to our program header, we see that this value is 60. If myRsiVal
is greater than 60 and myRsiVal[1] (previous bar value) is less than 60, then we
pass the test. Upon successfully passing the conditional statement, the program
then flows into the block of code that immediately follows the then statement.
Our variable obCount increases by one and osCount is reset to zero. Notice how
we used self-descriptive names for these variables. Basically, we are counting
the number of times we cross into overbought territory. Since we are dealing
with the overbought region, we reset our oversold counter to zero. The next if-
then statement counts the number of times we cross into oversold territory and
resets our overbought counter to zero.

if(myRsiVal < overSold and myRsiVal[1] > overSold) then
begin

osCount = osCount + 1;
obCount = 0; {Reset the OB counter since we are OS}

end;

The following code pertains to our protective stop and profit target. If we are
long, then we set our protective stop to the entryPrice – (moneyManStop/
PointValue/PriceScale). This formula looks quite complicated, but it really
isn’t. We take our input parameter moneyManStop (currently set to 1000) and
divide it by the instrument that we are testing’s PointValue and then divide this
result by the instrument PriceScale. Let’s say we are trading coffee and we
went long at 114.00. To calculate our protective stop, we would take 114.00
and subtract the result of ($1000/$3.75/100). This would give us 114.00 – 2.66
which equals 111.33. Many of you who are familiar with EasyLanguage and
TradeStation know that there are built-in $ Stop Loss strategies that you can

46 Building Winning Trading Systems with TradeStation

www.fx1618.com



add to any other strategy that will do the same as we have coded. The authors
personally like to have all of the entries/exits in one strategy. Even if you don’t
use our programmed money management stops or profit targets, you will at
least know how they are calculated. The keywords PointValue and PriceScale
reflect the properties of the stock or commodity that you are currently testing.
The keyword PointValue is the value per share of one increment of the
PriceScale. The keyword PriceScale is the quoted scaling factor of the instru-
ment. If you have two decimal places in the price, then your PriceScale would
be 100. If you have four decimal places in the price, then your PriceScale
would be 10,000. To figure out how a certain market is quoted (hundredths,
thousandths, etc.), look at the price or divide 1 by the PriceScale.

if(marketPosition = 1) then
begin

longProtStop = entryprice – (moneyManStop/PointValue/PriceScale);
longProfitStop = entryprice + (takeProfitStop/PointValue/PriceScale);
osCount = 0;   {Since we are long — reset the OS counter}

end;
if(marketPosition = –1) then
begin

shortProtStop = entryprice + (moneyManStop/PointValue/PriceScale);
shortProfitStop = entryprice – (takeProfitStop/PointValue/PriceScale);
obCount = 0;    {Since we are short — reset the OB counter}

end;

We calculate our protective and profit target stops and then use them in our
orders for the next bar.

{Order Placement Module}
if(obCount = 2) then sell short tomorrow at open; {We have entered OB twice}
if(osCount = 2) then buy tomorrow at open; {We have entered OS twice}

if(marketPosition = 1) then
begin

Sell ("longLoss")next bar at longProtStop on a stop;
Sell ("longProfit")next bar at longProfitStop on a limit;

end;
if(marketPosition = –1) then
begin

BuyToCover ("shortLoss")next bar at shortProtStop on a stop;
BuyToCover ("shortProfit")next bar at shortProfitStop on a limit;

end;

You may be asking, “Why did we put our liquidation orders inside if-then
statements?” When you give TradeStation an order directive, it will execute
automatically on the next bar. We don’t know our protective stop or profit

Program Control Structures 47

www.fx1618.com



target until we have a position. If we didn’t use the if-then and we had a flat
position and we issued a market order for the next bar, TradeStation would
also issue a liquidation order for the next bar without knowing the correct stop
or limit orders. Hypothetically, let’s assume that obCount is equal to 2, and we
place a market order to sell for the next day on the open. At the same time,
we have also told TradeStation to cover a short position at either a protective
stop or profit target limit. Sounds great, right? Wrong! We don’t know our
liquidation orders until after the market opens the next day. Without adding
the contingency of being in a long or short position, we have put the cart in
front of the horse. Remember, we are executing a single bar at a time and we
don’t know anything about tomorrow. So in our particular system the follow-
ing will not work properly:

BuyToCover ("shortLoss")next bar at shortProtStop on a stop;
BuyToCover ("shortProfit")next bar at shortProfitStop on a limit;

This is a logical error, and it is the hardest and most difficult to correct. The
compiler informs us of syntax errors and, in most cases, these types of errors
are simple typos. Contingent orders must use some form of decision and,
therefore, must be programmed with a program control structure.

REPETITIVE CONTROL STRUCTURES

Most trading strategies or indicators require a method of repeating a line or
block of code. EasyLanguage usually automatically handles this necessity for
the trader. However, there may be times when EasyLanguage doesn’t have a
solution and you will need to know about looping. A good example of looping
can be found in the simple moving average calculation. In EasyLanguage, you
can get the current moving average of a value by calling the Average function.

myAverage = Average(Close,10)   {This calculates a ten-day moving average}

See how EasyLanguage has provided a quick solution to our programming
needs? Just for fun, let’s see what is going on behind the scenes and learn about
looping. EasyLanguage accomplishes iterative processing (looping) through
two different iterative statements: the for loop and the while loop.

For Loop

Use the for loop when you know exactly how many repetitions are to be
processed. In the case of the moving average calculation, and most other cal-
culations, we know exactly how many bars we will use. Previously, we calcu-

48 Building Winning Trading Systems with TradeStation

www.fx1618.com



lated a ten-bar moving average of the closing prices by calling the Average
function. Now, let’s do the same thing without a function call.

Vars: mySum(0),counter(0),myAverage(0);

mySum = 0.0;
for counter = 0 to 9 begin

mySum = mySum + Close[counter];
end;
myAverage = mySum/10.0;

or

mySum = 0.0
for counter = 9 downto 0

mySum = mySum + Close[counter];
end;
myAverage = mySum/10.0;

Remember EasyLanguage’s ability to reference historical data by indexing the
keywords Open, High, Low, and Close. We have incorporated that ability into
our for loop. The historical closing information can be extracted by indexing
the keyword Close with our counter variable (the name of this variable can be
anything that is of numeric data type and can be used like any other variable).
In the previous code, the program executes the block of code ten times:

for counter = 0 to 9 begin ← start at 0 and end at 9 inclusive — 10 repetitions

The first time the loop is executed, the counter is set to zero and EasyLan-
guage tests this value to the end value (in this case, nine). Since the counter is
less than or equal to nine (it passes the test), the block of code immediately fol-
lowing the for statement is executed. Our variable mySum is initially set to
mySum + Close[0] (the current closing price since the counter equals zero).
When the program reaches the end of the block of code that is encapsulated by
the for statement, it loops back up to the beginning of the for statement. Easy-
Language adds 1 to our counter (now counter equals 1) and compares it to the
end value. This is similar in action to an if-then statement. Conditional
branching is built-in to the for loop. Since we are still less than or equal to
nine, we again execute the block of code that immediately follows the for state-
ment. On the last go around, mySum was set to Close[0]. This time counter is
now equal to 1, so mySum is now assigned the value of the previous mySum +
Close[1]. Do you see where we are going with this? In programming lingo,
mySum is known as an accumulator. The looping mechanism uses this variable
to sum up the closing prices for the past ten days. The loop terminates after the
counter reaches ten. You may think it would terminate when the counter

Program Control Structures 49

www.fx1618.com



reaches nine, but the for-loop processes from the starting number through the
end number. When the counter reaches nine, it is still less than or equal to
the end value and, therefore, processes the loop once again. The next time
through the loop, the counter is incremented to ten and then fails the test.
Upon failure, control passes to the next line immediately following the for
loop block. In our code, myAverage = mySum/10.0 is executed. After this state-
ment is processed, we then have the average of the closing prices for the past
ten days. In EasyLanguage, you can have for loops that loop from lower num-
bers to higher numbers or vice versa. If you loop from a higher number to a
lower number, you must use the keyword downto or the program will not loop
properly.

While Loop

The for loop works great when we know the number of repetitions that we
want to process. There are times, however, when you don’t know this infor-
mation. Again EasyLanguage comes to the rescue with the while loop. The
while loop continues to loop while a certain logical condition remains true.
The following code illustrates the use of the while loop:

Vars: myTestDate(1010101),counter(0),myHigh(0),myLow(999999);
{This program calculates the highest price and lowest price since
the beginning of the year}
myHigh = 0;
myLow = 999999;
counter = 0;
while (Date[counter] > myTestDate)
begin

if(High[counter] > myHigh) myHigh = High[counter];
if(Low[counter] < myLow) myLow = Low[counter];
counter = counter + 1;

end;

This loop starts with the current Date[0] and loops while Date[counter] is
greater than the beginning of the year. EasyLanguage represents the date in a
seven-digit format (YYYMMDD), whereas most other computer programs
represent the date in an eight (YYYYMMDD)- or six (YYMMDD)-digit
format. If the today’s date were 20010101, EasyLanguage would store it as
1010101.

Calendar Date EasyLanguage Representation
19991231 991231
20000101 1000101
20010101 1010101

50 Building Winning Trading Systems with TradeStation

www.fx1618.com



By increasing the counter by 1 each time through the loop, we are actually
going back in history. Remember, today’s open price is Open[0] and yester-
day’s open is Open[1]. As we loop backward, we compare the highs and lows of
the bars with the myHigh and myLow variables. Each time we find a higher high
or lower low, we store those prices in our variables for later use. The while
loop is not terminated until we go back in time to the date of 20010101. We
were able to loop without knowing the exact number of repetitions that needed
to be processed.

CONCLUSIONS

Through the use of program control structures, a program can make an
informed decision. Remember, the programmer makes the computer intelli-
gent by setting up the decision process and the consequences of the decision.
Decision-making is programmed through the use of if-then and if-then-else
statements. These statements control which instructions are executed and
which are not. The for loop and while loop statements are two program control
structures that provide us with one of the great benefits of computers: the abil-
ity to do repetitive tasks quickly. Understanding how computer programs
make decisions is vital in our goals of accurately programming our analysis
techniques.

Program Control Structures 51

www.fx1618.com



52

4

TradeStation Analysis
Techniques

EasyLanguage is the power behind TradeStation. Without this power,
TradeStation would not be any different than any of the other real-time chart-
ing software packages. EasyLanguage is the driving force behind all of
TradeStation’s analysis techniques: PaintBar, Indicator, ShowMe, Function
and Strategy. Each of these techniques are discussed, and sample code is given
so that you can use it as a template for your own research. We have covered the
basic essentials of programming from the first three chapters and now will use
this knowledge to put our trading ideas into action.

INDICATORS

An indicator is a graphic representation of a mathematical formula used to ana-
lyze market data. If you have used charting software before, you probably know
what some of the most popular indicators are. Indicators are the lines (graphs)
that are either plotted on top of bar charts or in subgraphs above or below the
bar chart. These lines are used to help understand and, in some cases, to fore-
cast market action. Indicators are the plotted output of a formula applied to the
price data.

The most famous indicator of all is the moving average of closing prices.
The graph of the moving average is a continuous line that can be plotted on the
actual bar chart data. Not all indicators can be plotted on the underlying bar
chart due to the difference in their scaling properties. The scale of the output
of a moving average calculation is the same as the data that was used for the
input. Since the scale of the input and output of this indicator is the same, it

www.fx1618.com



can be plotted on the same one as the price data. The outputs of some indica-
tors, such as the relative strength index (RSI, by Welles Wilder), have a differ-
ent scale than price data and should be plotted in a subgraph. However, with
TradeStation you can graph these types of indicators on the bar chart if you
like. Keep in mind that the graphs have different scales. The output of most
indicator functions does not create smooth-looking, continuous graphs. They
generate a data point for each bar of data and then TradeStation connects
these lines together in a connect-the-dots fashion.

To demonstrate how simple it is to apply an indicator to a bar chart, let’s
go ahead and apply the Mov Avg 1 Line indicator to a Yahoo! daily bar chart.
Create a daily bar chart of 500 days for Yahoo! and then go up under the Insert
menu and select Indicator. A dialog box like the one in Figure 4.1 should open.

Scroll through the list of indicators and select Mov Avg 1 Line. Make sure
the Prompt for Format box is checked and then click OK. Since we checked the
Prompt for Format box, you will be presented with another dialog box that
should be like the one in Figure 4.2.

This dialog box allows the user to change the format of the Mov Avg 1
Line indicator. Here the width, color, and style of the line and the inputs (if
any) of the indicator can be changed. Click on the Scaling tab and you will have
a choice of four different scaling types:

TradeStation Analysis Techniques 53

Figure 4.1 Insert Analysis Techniques and Strategies—Indicator

www.fx1618.com



Same as symbol: Choose this option to use identical scaling for the y-axis
(price axis) and the symbol to which the analysis technique is applied.

Screen: Select this option to display only the range of values currently
displayed on the screen without regard to the range of data loaded for
the chart.

Entire data series: Choose this option to display the entire range of val-
ues for all data loaded in the chart, no matter how far you scroll to the
left or right of the current screen view.

User-defined: Select this option to format the y-axis to your preferences.
Enter the lowest value to use in the Minimum box and the highest
value in the Maximum box.

54 Building Winning Trading Systems with TradeStation

Figure 4.2 Format Indicator: Mov Avg 1 Line

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



We prefer to use “Same as symbol” scaling when the indicator is to be plotted
on top of the bar chart. If an indicator is oscillator-based and is plotted in a
subgraph, we generally use “Same as symbol” or “Screen” scaling. Check the
Same as symbol box and then click OK. You should have a chart window sim-
ilar to Figure 4.3 on your screen.

You can scroll through the data and the indicator will change based on the
data that is currently in your view. You may want to play with changing the for-
mat of this indicator or inserting more of the built-in indicators as practice.

Applying an indicator requires a few mouse clicks and pecks at the key-
board. Programming an indicator can be as simple if you understand the basic
framework and the keywords or functions that are used in the development of
this type of analysis technique. Let’s create our first indicator. Make sure
TradeStation is up and running and go under the File menu and select New.
A dialog box like the one in Figure 4.4 will open.

You may remember this dialog box from Chapter 1. Select the Easy-
Language tab and select the Indicator icon and then click on the OK button.
The New Indicator dialog box will open and ask you to type in the name of the
indicator and some notes about the indicator. Type “MyMovAvgIndic” in
the name field and “simple moving average indicator” in the notes field. This
dialog box will also ask you to make the analysis technique available to a chart
analysis. We always check this box. Finally, you can choose what type of tem-
plate from which to use when building your indicator. Select none and then
click OK. Once you become an EasyLanguage pro, you will probably want to
use a programming template. These templates provide some code to get you

TradeStation Analysis Techniques 55

Figure 4.3 Yahoo! Bar Chart with Moving Average Indicator

www.fx1618.com



up and running quickly. You should be presented with a blank window titled
Indicator: MyMovAvgIndic. TradeStation has initially created an indicator based
on our input from the previous dialog boxes. Type the following code exactly
as you see here:

Inputs: myPrice(close),myLength(9);
Vars: counter(0),sum(0.0),myAverage(0.0);
sum = 0.0;
for counter = 0 to myLength-1
begin

sum = sum + myPrice[counter];
end;
myAverage = sum/myLength;
Plot1(myAverage, "SimpAvg1");

After you are finished typing, hit the F3 key and verify your code. Again, if you
get any error, double-check your code for any typos. Once you are successful
at verifying your code, go ahead and apply MyMovAvgIndic to the same
Yahoo! daily bar chart that we used previously. Click OK in the associated dia-
log boxes until you have the moving average line overlaying the price data. It
should look similar to the chart in Figure 4.5.

56 Building Winning Trading Systems with TradeStation

Figure 4.4 New Dialog—Indicator

www.fx1618.com



The key to a well-written indicator is its flexibility. In MyMovAvgIndic
we utilized two inputs: myPrice and myLength. These two inputs allow the
user the freedom to pick what data (Open, High, Low, Close, or Volume) and
how many days to use in the calculation. We have designed this indicator to be
about as flexible as possible. We could have programmed the indicator with
only the myLength input and forced the user to always use a hard-coded (pro-
gramming designed to get a particular job done without regard to future flex-
ibility) price series. If we hadn’t allowed the user to pick which data series to
use, we would have had to program the indicator in the following manner:

for counter = 0 to myLength-1
begin

sum = sum + Close[counter];
end;

Instead of using myPrice in the for loop, we would have to hard code the
Close or High or Low or Open price series into our programming. Our
indicator would not be universal, and you would have to have four different
indicators for each price series. The previous programming allows
MyMovAvgIndic to be universal. We can calculate the moving average of the
Highs, Lows, Opens, or Closes of any market by simply changing our first
input, myPrice.

In the discussion of indicator flexibility, we brought up the term series.
Remember in Chapter 1 when we introduced data types? There were basically
three different types: numeric, Boolean, and string. The numeric type can be

TradeStation Analysis Techniques 57

Figure 4.5 Yahoo! Bar Chart with MyMovAvgIndic

www.fx1618.com



divided into two different categories: simple and series. A variable of type
numeric simple has only one value at a time. In the code of MyMovAvgIndic,
the variable sum is of this type. A variable of type numeric series is one that has
a list of different values. The keywords Open, High, Low, and Close are of this
type. We can index these variables and get different values (e.g., Close[1]
is yesterday’s closing price and Close[2] is the previous day’s closing price). In
computer lingo, these variables are known as arrays. An array is a list of items
that have something in common. Like most other high-level programming
languages, EasyLanguage allows you to define variables as arrays. The average
trader seldom uses arrays beyond the built-in array variables, so we will tem-
porarily put this discussion on hold. Just know that when we say a price series,
we mean a list of the entire history of that particular price (Open, High, Low,
and Close).

Let’s review the rest of the code. We know the inputs and their functions
and for loops (Chapter 3) and how to calculate the moving average of prices.
The line of code that makes this program an indicator is:

Plot1(myAverage, "SimpAvg1");

This statement tells TradeStation to plot the value of the variable myAverage
in a chart window below the chart of the price data. Once the indicator is plot-
ted, we simply drag it from the subgraph onto the same graph as the price data
and use the same scaling. You can see where price crosses the moving average
line. To determine the exact date that a price bar crosses from above or
below the moving average line, you must set the scale of the two graphs to be
exactly the same.

The Plot1 keyword acts in similar fashion to a function call. We passed it
a list of parameters and it did something for us. It can also return the value of
the plot from the most recent bar that was executed. Plot1 is different than the
functions that we have discussed in that you can pass it a different number of
parameters. In our example, we simply passed the value that we wanted to plot
and the name of the indicator. This name shows up in the information window
that pops up when you click on a bar in a chart. We could have passed more or
less parameters to the Plot1 statement:

Plot1(Value) ;

or

Plot1(Value, "My Plot Name", Red, Default, 0) ;

Plot1 can take up to five parameters: (1) the value to be plotted, (2) the name
of the plot (optional), (3) the color of the plot (optional), (4) background color
(optional), and (5) the thickness of the line that represents the plot. EasyLan-

58 Building Winning Trading Systems with TradeStation

www.fx1618.com



guage only requires the value to be plotted in the Plot1 statement; the other
arguments are optional. If you don’t pass a particular argument, EasyLanguage
presumes you want to use the default value. Even though some of the argu-
ments are optional, the order of the arguments is important.

EasyLanguage expects the first argument to be the value to be plotted,
and the second argument to be the name of the plot and so on. This order has
to be clear. Let’s say you wanted to pass the Plot1 statement the value to be
plotted, its name, and the width of the line. You would have to pass all of the
arguments because the width argument is last in order. You would have to
invoke the Plot1 statement by typing:

Plot1(myValue,"myValueName",Default,Default,5);

The keyword Default tells TradeStation to accept whatever default values exist
for that particular argument. In this case, they are the color of the plot and the
background color. EasyLanguage is smart, but it is not a mind reader. It knows
which values are being used by their place in the argument list.

Indicators are powerful tools in the analysis of data and the design of
trading strategies. If you want to include an indicator in a strategy, you can
quickly plot the indicator and visually evaluate its effectiveness. Unfortunately,
as we explained in The Ultimate Trading Guide (Hill, Pruitt, and Hill, John
Wiley, 2000), most canned (included for free) indicators are not effective by
themselves.

PAINTBAR AND SHOWME STUDIES

These two studies are similar in that they both look for and mark a bar or bars
that meet specific criteria. The PaintBar study will mark the entire bar,
whereas the ShowMe study will usually place a mark above or below the bar.
These studies make it easy to visually interpret different market conditions; for
example, you can paint bars one color when the market is overbought and
another color when it is oversold. ShowMe studies are best used for criteria
that result in a low frequency of occurrences. The less dots that are above or
below a bar, the easier it is to visually interpret the market activity following
the occurrence of the certain criteria. Pivot highs and pivot lows are best illus-
trated with a ShowMe study rather than a PaintBar study. The choice of which
study to use is up to the user’s own preference. We prefer to use ShowMe stud-
ies for pattern recognition and PaintBar studies for illustration of certain mar-
ket modes. The best way to learn to program these analysis techniques is to
jump in and create them from scratch. Let’s start with a PaintBar study.

With TradeStation running, go under the File menu and select New.
The now familiar dialog box will come up. Select the EasyLanguage tab and

TradeStation Analysis Techniques 59

www.fx1618.com



click on the PaintBar icon. In the resulting dialog box, type “MyPaintBar” in
the name field and “paint bars different colors in OB/OS regions” in the notes
field and then click OK. You will be presented with a blank, yet familiar Easy-
Language window. Type the following code in exactly.

{Simple PaintBar Analysis
Demonstrates TradeStation's ability to highlight bars in
different market conditions}

Inputs: overbought(70),oversold(30),rsiLength(14);
Vars: myRsiVal(0);

MyRsiVal = RSI(Close,rsiLength);

if(myRsiVal>overBought) then PlotPaintBar(High,Low,"RSI",RED);
if(myRsiVal<overSold) then PlotPaintBar(High,Low,"RSI",YELLOW);

After typing the code, hit the F3 key or go up under the File menu and select
Verify. Let’s see how we did. If you don’t have the chart of Yahoo! that we used
earlier in the chapter open, go ahead and create another one. Insert our Paint-
Bar study in the same fashion as we did our MyMovAvgIndic (under the Insert
menu). (You will notice the further you get into this book, the less descriptive
we become in our instructions. We feel this promotes your ability to remem-
ber the processes necessary to use TradeStation.) Once you have inserted
MyPaintBar into the chart, you should be able to scroll through the chart and
see the yellow and red daily bars. If you would like to see if our PaintBar study
is accurate, go ahead and insert the RSI indicator with our same inputs. We
should have red bars when the oscillator is in the overbought region and yel-
low bars when it is in the oversold region.

The code for our PaintBar study is similar in structure to our moving
average indicator that we programmed earlier. The only thing that differenti-
ates a PaintBar from an Indicator is the PlotPaintBar statement.

PlotPaintBar(High,Low,"RSI",RED);

This statement tells TradeStation to paint a bar red from the high price to the
low price. Also, the statement instructs TradeStation to use the word “RSI” in
the bar information window. If you hold the mouse button down and scroll
across a bar that has been painted, you will get a RSI1 and RSI2 value in the bar
information window. These values represent the high and the low prices of the
bar. We used the word RSI to denote that we were using the RSI indicator to
determine our overbought/oversold conditions. You can use any word you
like. We painted our overbought bars red by telling TradeStation to use the
color red in our PlotPaintBar statement. This argument is optional; if you
don’t choose a color, TradeStation will choose for you. We wanted to paint

60 Building Winning Trading Systems with TradeStation

www.fx1618.com



bars two different colors based on market conditions, so we chose the colors
ourselves. When working with analysis techniques, you can specify any of the
17 colors listed below (including -1), using the name, or numeric equivalent:

Color Name Numeric Equivalent
Default –1
Black 1
Blue 2
Cyan 3
Green 4
Magenta 5
Red 6
Yellow 7
White 8
DarkBlue 9
DarkCyan 10
DarkGreen 11
DarkMagenta 12
DarkRed 13
DarkBrown 14
DarkGray 15
LightGray 16

In addition to selecting the PaintBar color, you can also select the portion of
the bar that you want painted. In our PaintBar study, we painted the entire bar
from top to bottom. We could have painted the bar from the Open to the
High, Open to Close, Open to Low, or any combination of these. You can’t
paint from Open to Open, High to High, Low to Low, or Close to Close;
there must be a range. Using the PlotPaintBar statement is quite easy. The
hard part is creating the criteria necessary to determine when and when not to
use the statement. When you typed the code for MyPaintBar, we used an if-
then construct to alter the flow of the program. We only painted a bar red
when the RSI was above 70. We only painted a bar yellow when the RSI was
below 30. We can quickly scan this chart and determine potential overbought
and oversold market conditions. If you don’t care for the RSI as an indicator
for overbought/oversold, you could incorporate a different indicator.

You may ask, “Why use the PaintBar study when you could have just sim-
ply used the Indicator?” We programmed our study utilizing the RSI function
for demonstration purposes. Many times a PaintBar study doesn’t use some

TradeStation Analysis Techniques 61

www.fx1618.com



built-in function or indicator. We have programmed a complex pattern recog-
nition PaintBar to illustrate this point. The coding for this PaintBar will draw
on everything we have learned up to this point. Go ahead and create a new
PaintBar and name it MySequentialHunter. In the notes field type, “paint
sequential set up”. This study is based on one of Tom DeMark’s complex pat-
terns, the Sequential. We will program the first stage of the pattern and paint
the bars that fall within our pattern recognition criteria. Type the following
into your EasyLanguage document and verify it.

{Paint the Sequential Setup Pattern
Sequential is by Tom Demark
Paint buy setup Yellow and sell setup Red}
Vars: index(0),checksum(0);

{Buy Setup}
checkSum = 0;
for index = 0 to 8
begin

if(Close[index] < Close[index+4]) then checkSum = checkSum + 1;
end;
if(checksum = 9) then
begin

for index = 0 to 8
begin

PlotPaintBar[index](High[index],Low[index],"Sequential",YELLOW);
end;

end;

{SellSetup}
checkSum = 0;
for index = 0 to 8
begin

if(Close[index] > Close[index+4]) then checkSum = checkSum + 1;
end;
if(checksum = 9) then
begin

for index = 0 to 8
begin

PlotPaintBar[index](High[index],Low[index],"Sequential",RED);
end;

end;

After you successfully verify your code, apply MySequentialHunter to the same
YAHOO! chart that we have been using. You will probably want to delete the
other analysis techniques before inserting this one. The code for MySequen-
tialHunter may look daunting, but it is relatively simple. We have four for

62 Building Winning Trading Systems with TradeStation

www.fx1618.com



loops. The first loop counts the consecutive days that the closing price is less
than the closing price four days prior. If we have nine consecutive closes that
meet our criteria, then the checkSum variable will be equal to nine. If we don’t
have nine consecutive closes, then checkSum will be less than nine. If checkSum
is equal to nine, we then proceed to the next for loop. This loop calls the Plot-
PaintBar statement nine times (our index variable goes from 0 to 8). The first
time through the loop, the index is equal to zero. Therefore, the call to the
PlotPaintBar looks like:

PlotPaintBar[0](High[0],Low[0],"Sequential",YELLOW);

The next time through the loop, the call looks like:

PlotPaintBar[1](High[1],Low[1],"Sequential",YELLOW);

This continues until the termination of the loop. By using the brackets and an
index variable, we are telling TradeStation to paint today’s bar yellow, yester-
day’s bar yellow, in addition to the preceding seven bars yellow. Again, if you
want to paint yesterday’s (or prior) bar yellow you must index the PlotPaintBar
statement with [1] (PlotPaintBar[1]—basically we are offsetting the bar that we
want painted from the current bar). You also must be careful to synchronize
the High’s and Low’s index variables with the same PlotPaintBar index vari-
able. The following statement may not produce your expected outcome:

PlotPaintBar[1](High,Low,"Sequential",YELLOW);

This tells TradeStation to paint today’s high and low values on yesterday’s
bar. This may or may not paint the bar the way you want it to be. Just remem-
ber to paint the correct high and low price for the corresponding bar in the
past.

Most analysis techniques are symmetric; a bullish analysis is usually just
the opposite of a bearish analysis. Referring back to the code for MySequen-
tialHunter, you will notice that there are only two lines that separate the buy
setup from the sell setup:

Buy - If(Close[index] < Close[index+4] then checkSum = checkSum + 1;
Sell - If(Close[index] > Close[index+4] then checkSum = checkSum + 1;

The only other difference is the call to the PlotPaintBar statement with differ-
ent colors. Once you program the bullish analysis technique, you can quickly
create the bearish analysis by simply copying, pasting, and editing the logic.
Many times you can accomplish this by simply changing Highs to Lows,
greater than to less than, positive numbers to negative, and so on. Of course,
this wouldn’t work for an analysis that wasn’t symmetric.

TradeStation Analysis Techniques 63

www.fx1618.com



The ShowMe study is similar to the PaintBar. We won’t bore you much
further with an elaborate explanation, so let’s learn by doing. Create a new
ShowMe study in similar fashion to a PaintBar study and type “MyShowMe”
in the name field, and “Show a two-day flip” in the notes field. Once you get a
blank EasyLanguage document, type the following in exactly.

{MyShowMe
Show the Bars that represent a
Two-day flip}

Inputs: strongThrustPrcnt(.75),volCalcDays(10);
Vars: volMeasure(0);
volMeasure = avgTrueRange(volCalcDays);

{bearish indicator}
if(Close[1] > Open[1] + strongThrustPrcnt*volMeasure and

Close < Open – strongThrustPrcnt*volMeasure and
Open < Close[1]) then
begin

Plot1(High,"TwoDayFlip",RED);
Plot1[1](High[1],"TwoDayFlip",RED);

end;

{bullish indicator}
if(Close[1] < Open[1] – strongThrustPrcnt*volMeasure and

Close > Open + strongThrustPrcnt*volMeasure and
Open > Close[1]) then
begin

Plot1(Low,TwoDayFlip",YELLOW");
Plot1[1](Low[1],"TwoDayFlip",YELLOW");

end;

The programming of a ShowMe study is almost the same as a PaintBar study—
the only difference is the ShowMe study uses Plot1 and the PaintBar uses the
PlotPaintBar statement to draw to the screen. In our ShowMe study, we mark
the two bars that make up the Two-Day flip pattern. As we did in our Paint-
Bar, we programmed our setup criteria by using if-then program control struc-
tures. We only mark the bars that pass our test. The Two-Day flip can indicate
an end to a bullish or bearish trend. The bullish Two-Day flip occurs when
yesterday’s close is well below yesterday’s open, today’s open is below yester-
day’s close, and today’s close is well above today’s open. The bearish Two-Day
flip is just the opposite of the bullish version: yesterday’s close is well above
yesterday’s open, today’s open is above yesterday’s close, and today’s close is
well below today’s open. See the symmetry? This is a general description of the
pattern. Programmers like us (if you have made it this far and understand
the concepts that we have presented—then classify yourself as a programmer)

64 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



know that a general description of an idea is not sufficient to produce actual
code. Therefore, the exact definition of a bullish Two-Day flip is: yesterday’s
close is less than one 10-day average true range below yesterday’s open, today’s
open is less than yesterday’s close, and today’s close is greater than one 10-day
average true range above today’s open. Again, the bearish version is just the
opposite. This exact mechanical description is necessary for successful transla-
tion into EasyLanguage. The Plot1 statement that we use in our ShowMe
study is the exact same statement that we used in our Indicator. Instead of cre-
ating a continuous line that represents an output of a formula, we are using the
statement to demark a bar that meets a certain criterion. In our ShowMe code,
we used the Plot1 statement to mark the high price or the low price of the two
bars that made up the Two-Day flip:

Plot1(High,"TwoDayFlip");
Plot1[1](High[1],"TwoDayFlip");

As with the PaintBar study, we had to synchronize our Plot1 statement with
the corresponding bar. When plotting an Indicator, you use the value of the
indicator and not a reference to a bar’s specific price. Once we encounter a day
that does not pass our criteria, the drawing stops. Hence, you have dots instead
of a continuous line. You can have up to four different Plot statements in your
code: Plot1, Plot2, Plot3, and Plot4. Each plot statement can represent a dif-
ferent value; Plot1 could be a moving average value, whereas Plot2 could be a
Bollinger Band. The key to an accurate PaintBar or ShowMe study is found in
the programming of the criteria.

FUNCTIONS

Functions are the backbone of TradeStation. One of the most important
concepts to efficient programming is the idea of reusable code. How would
you like to have to reprogram Welles Wilders’ RSI calculation every time you
incorporated it into your analysis technique? Programming analysis techniques
require a heavy dependence on EasyLanguage’s vast library of functions. Many
of the indicators and strategies that you will develop will mostly consist of
function calls. You can think of the functions that make up the library as small
building blocks and yourself as a mason. It is your job to build your analysis
techniques out of these blocks. Of course, there will be times when a mason
must customize a block to fit a particular project. This applies to programmers
also; you might find that by tweaking the built-in Stochastic function you end
up with a better oversold/overbought indicator. By tweaking, we mean chang-
ing a portion of the code that makes up the function. If you ever do this, always
remember to save your modified function under a different name than the

TradeStation Analysis Techniques 65

www.fx1618.com



original. If you change the RSI calculation, rename it to something like
MyRSI. You want to keep the built-in library as pristine as possible. Many
times you will borrow or purchase code from other TradeStation users, and in
most cases this code will presume that the built-in library is the same as the one
from the computer where it was created. If your library is different than the
creator of the code’s library, you may get totally different results.

As a programmer, you are not limited to using functions or simply edit-
ing existing ones. You can create these building blocks from scratch. The more
you program, the more intricate your programming becomes. Elaborate pro-
grams require elaborate building blocks. In the early stages of learning how to
program analysis techniques, the built-in library is more than sufficient. As you
progress, you will soon discover that the library is too limiting and must be
expanded. You expand the library by creating functions. Since, right now, you
may not be an experienced programmer, you may be asking yourself, “How
will I know when I need to create a function?” There are basically two situa-
tions when you will need to be a function creator. The first is when you dis-
cover that you are repetitiously typing the same code over and over again. The
second is when you discover the Holy Grail and you would like to pass this
information on to other users for free. For free? We mean $10,000 a pop.

As we have done with other analysis techniques, let’s create a function
from scratch. Go up under the File menu and go to New. When the dialog box
opens, select function. Type “ChoppyMarketIndex” in the name field, and
“This function determines market choppiness” in the Short Description field.
As you can probably deduce from the name of this function, we are attempting
to measure a market’s indecisiveness. You will notice that we must inform
TradeStation of the type of data that our function will return. All functions
must return a value (the result of the function’s calculations). Most of the time,
a function will either return a numeric or Boolean value. A function can also
return a string value (a letter or a string of letters), but we have never encoun-
tered the need for this. Click on Numeric simple and hit OK. When you have
a blank EasyLanguage document, type the following code:

{Choppy Market Index Function
This function returns a value from 0 to 100.
A lower value denotes higher market indecisiveness (choppiness),
whereas a higher value denotes a trending market.
The only input is the number of bars that we look back.}

Inputs: periodLength(Numeric);
Vars: num(0),denom(1);
if(periodLength<>0) then
begin

denom = Highest(High,periodLength) – Lowest(Low,periodLength);
num = Close[periodLength-1] – Close;

66 Building Winning Trading Systems with TradeStation

www.fx1618.com



num = AbsValue(num);
ChoppyMarketIndex = 0.0;
if(denom<>0) then ChoppyMarketIndex = num/demon*100;

end;

Did you notice how this function was made up of other functions (build-
ing blocks)? We calculated the denom (denominator) by using the Highest and
Lowest functions. We calculated the num (numerator) by using AbsValue
(returns the absolute value of a number) functions. The only confusing snippet
of code in this function is probably:

Close[periodLength-1] – Close

You may be asking why we subtracted 1 from the periodLength. This is a great
question. If you incorporate today’s closing price into a calculation, then the
closing price 30 days ago would be referenced by Close[29]. Remember that
Close[1] is yesterday’s closing price not today’s. Since we want our index to
flow between 0 and positive 100, we remove the negative sign of a down move
in the market. We are only interested in absolute distances.

Becoming a good EasyLanguage programmer does not require an in-
depth knowledge of the intricacies of all of the built-in functions. It does, how-
ever, require knowledge of how to put all of the pieces together. (Maybe we
really should call ourselves masons instead of programmers.) The function that
we just typed in and verified can be used to determine the current choppiness
of a market. Later on when we begin to develop successful trading strategies,
we will use this function as a building block. The ChoppyMarketIndex func-
tion determines market choppiness by dividing the change in market price for
the past 30 days by the total distance the market has traveled during that time
period. If the net change in market price is small and the market has demon-
strated wild swings, the ChoppyMarketIndex function will return a small num-
ber. In the following description of our function, we assume the periodLength
is equal to 30. We determine the price change for the past 30 days by sub-
tracting the closing prices of 30 days ago from today’s closing price. The vari-
able num is assigned this value. We then determine the total distance the
market has traveled by subtracting the lowest low for the past 30 days from
the highest high of the past 30 days. The variable denom is assigned this value.
The ChoppyMarketIndex is then assigned the value of num divided by denom
multiplied by 100. Since the change in market price for the past 30 days will
always be equal to or smaller than the total distance the market has moved over
the same time period, our function will always return a number between 0 and
100. You will notice that we have made the function flexible. We used an input
as the period length. By doing this, we have allowed the user of this function
the ability to change the number of days that is used in the calculation. If you
are developing a short-term strategy, then you would probably pass the

TradeStation Analysis Techniques 67

www.fx1618.com



function a short period length and vice versa. Once you have finished your cal-
culations for a function, you must assign a value to the name of the function.
In this case, we assigned our final calculation to ChoppyMarketIndex, the
name of our function. If you forget to do this, the function will not return an
accurate value. This function is actually useful and will be the basis for one of
the strategies that we develop in Chapter 6. Did you notice that in the Inputs
statement of this function we used NumericSimple inside the parentheses of our
Input variable, periodLength? “Why did we do this and why didn’t we simply
type a default value for the input variable?” you may inquire. Again, this is a
wonderful question and since functions are the backbone of TradeStation, it
should be answered in great detail.

Functions are in some ways similar to other Analysis Techniques, but
overall they are quite different. Think of functions as separate subprograms.
These subprograms are designed to calculate and change the value of some
variable. Indicators, ShowMe, and PaintBars are designed to graphically rep-
resent an idea or a mathematical expression. When we create a function,
TradeStation needs to know ahead of time what type of variable the function
would return. TradeStation also needs to know the type of information that is
being passed to the function, which is why we used the keyword NumericSim-
ple in the Input statement. The function’s Input statement is its interface with
the program or analysis technique that called it. It is the doorway that data and
information passes. In computer lingo, it is also known as the formal parame-
ter or argument list. Like the function itself, a parameter can be of subtype
simple, series or reference. We haven’t discussed the type reference, but we
will due to its powerful capabilities.

Simple parameters are constant values that are set in the trading strategy
or analysis technique that calls the function. Our periodLength parameter is of
this type. Simple parameters require less memory and improve overall execu-
tion speed. They retain their values within the function and cannot be modi-
fied within the body of the function. In other words, you can’t change their
value once inside the body of the function, period.

Like simple parameters, series parameters are constant values that are set
in the trading strategy or analysis technique that calls the function. However,
when the function refers to previous values of the input variable you use as the
parameter, then this parameter must be defined as a series parameter. Current
and historical values of the input variable are accessible from within the body
of the function. This allows the function to refer to the previous bar’s value of
the parameter. Confusing, isn’t it? Let’s say you create a function that sums the
differences between two data or price series. To make the function as flexible
as possible, you want to give the user or caller of the function the ability to
choose which data series is used. With this in mind, you would program the
function to accept NumericSeries type data. Take a look at the following code
as it might help clear up some of this confusion.

68 Building Winning Trading Systems with TradeStation

www.fx1618.com



{SumDiff – sum up the difference between two data series}
Inputs: dataSeries1(NumericSeries),dataSeries2(NumericSeries),length

(NumericSimple);
Vars: sum(0);
for Value1 = 0 to 20
begin

sum = sum + (dataSeries1[value1] – dataSeries2[value1]);
end;
SummDiff = sum;

See how we used the keyword NumericSeries in the function’s Input statement.
This prepares TradeStation, ahead of time, to accept the history of the variable
that is passed to the function. In computer lingo, this preparation is known as
function prototyping. So, to summarize, a simple parameter is just one value,
whereas a series parameter is a list of values. Like simple parameters, series
parameters cannot be changed within the body of the function.

Parameters can be passed to a function by value or by reference. When
the parameter passes information by value, as is the case with simple and series
type parameters, the function creates a copy of the information passed into it,
and whatever is done with the parameter in the function does not affect the
value of the parameter within the trading strategy or analysis technique that
called the function. When information is passed by reference, the function
uses the original information from the trading strategy or analysis technique
that called the function, and any calculations that are performed on the para-
meter are reflected in the value of the parameter within the analysis technique
that called the function as well as within the function. Why on Earth would
you want to do this? Remember how we are always comparing EasyLanguage
to modern-day, high-level programming languages? Most programming lan-
guages have two types of subprograms: functions and subroutines. Functions
are used when a calculation returns only one value. Subroutines are used when
more than one value is calculated or a chore is needed to do more than just
simply return a value of a calculation. The programming that went into the
creation of TradeStation uses functions and subroutines. When you click on a
menu, a subroutine is called to handle the actual drawing of the menu list and
another subroutine is called to handle whatever command you choose from the
menu. These subroutines do more than just return single values. Since we are
not programming a graphical user interface, we will simply use the refer-
ence type and functions to return multiple values. In all honesty, you probably
will only use reference-type parameters on rare occasions. The following func-
tion demonstrates the proper use of these types of parameters.

{Function ZoneBands by George Pruitt – 
Illustrates the power of passing parameters by reference.}

Inputs: zBand1(NumericRef),zBand2(NumericRef),
zBand3(NumericRef),zBand4(NumericRef),length(NumericSimple);

TradeStation Analysis Techniques 69

www.fx1618.com



Vars: myAverage(0),myAtr(0);
myAverage = Average(Close,length);
myAtr = AvgTrueRange(length);
zBand1 = myAverage + (myAtr/2);
zBand2 = myAverage + myAtr;
zBand3 = myAverage – (myAtr/2);
zBand4 = myAverage – myAtr;
ZoneBands = 1;

This function does not seem to return a significant value, however, it does
return a value out of pure necessity. All functions must return a value. In the
case of ZoneBands, the statement that assigns a value to the function name is
only there for syntactical correctness. This function in fact returns four differ-
ent and significant values. Maybe we shouldn’t use the term return. This func-
tion modifies the four parameters (zBand1, zBand2, zBand3, zBand4) that are
passed as NumericRef type. Once they are changed within the body of the
function, they are forever changed. We were able to calculate four variables
from one function call. The following snippet of code illustrates how to use
this type of function call.

Vars: myBand1(0),myBand2(0),myBand3(0),myBand4(0),tempReturnVal(0);
TempReturnVal = ZoneBands(myBand1,myBand2,myBand3,myBand4,20);
Plot1(myBand1,"Band 1");
Plot2(myBand2,"Band 2");
Plot3(myBand3,"Band 3");
Plot4(myBand4,"Band 4");

Every time ZoneBands is called, the four variables are modified. We assigned
a temporary variable the value that is returned from the call to ZoneBands.

STRATEGIES

Strategies are a major part of this book. Indicators are used more or less as
tools, whereas strategies are used as the mechanisms to generate exact buy and
sell signals. Strategies are the vehicles that most third-party developers use
to sell their ideas. You may not believe us when we say that a good portion of
TradeStation users only use their software as an interface for these strategies
for hire. We don’t have a problem with this. TradeStation can be used as a
research tool or as a tool for information dissemination.

As you have seen from the previous chapters, strategies are programmed
in similar fashion to other analysis techniques. They all use data types, incor-
porate assignments and/or decisions, and do mathematical calculations. The
one thing that separates strategies from other analysis techniques is they issue
orders. As we have discussed, TradeStation can place three types of orders:

70 Building Winning Trading Systems with TradeStation

www.fx1618.com



market, limit, and stop. Market orders can be placed this bar on close or next bar
at market. Strategies can place multiple orders for any single bar. TradeStation
has two rules that determine which orders get filled:

1. Orders on Close and Next Bar at Market
2. Stop and Limit Orders

Orders placed to be filled this bar on close have the highest priority. Once all of
these orders have been filled, the next bar at market orders are evaluated. If
there is more than one order with the same execution method, the order that
was placed first in the strategy takes priority and is filled first.

Once all market orders are evaluated, the Trading Strategy Testing
Engine analyzes stop and limit orders. If there are multiple stop or limit orders,
then TradeStation gives a higher priority to the order that is closest to the
market (closest to the current price). This is done in order to simulate how stop
and limit orders are actually filled. If a symbol is trading at 649, and there are
two limit orders to buy—one at 648 and one at 647—as the market drops,
the order to buy at 648 would be filled first, and the order to buy at 647 would
be filled second. Therefore, TradeStation fills these orders in that way, pro-
ducing results that are as realistic as possible. If stop orders are used and you
have two orders to buy at 650 and 651 and the current price is 649 and rising,
then the 650 stop is filled first and then the 651. By generating exact entry and
exit orders, strategies can be back tested over several years of historical data to
determine effectiveness. (Chapter 5 is dedicated to the analysis of strategy per-
formance and optimization.) The rest of this chapter will illustrate how to cre-
ate trading strategies utilizing built-in EasyLanguage functions.

ADX and Moving Average based Strategy
{ADX by Wells Wilder—ADX determines trendiness}

Inputs: adxLength(14),mavLength1(9),mavLength2(19);
Vars: adxVal(0);
adxVal = Adx(adxLength);
if(adxVal>=15) then {we are in trending mode}
begin

if(Average(Close,mavLength1) crosses above Average(Close,mavLength2)) then
buy tomorrow at High stop;
if(Average(Close,mavLength1) crosses below Average(Close,mavLength2)) then
sellshort tomorrow at Low stop;

end;
if(adxVal<15) then {we are not in trending mode)
begin

if(MarketPosition = 1) then Sell next bar at Lowest(Low,4) stop;
if(MarketPosition = –1) then BuyToCover next bar at Highest(High,4) stop;

end;

TradeStation Analysis Techniques 71

www.fx1618.com



This simple strategy incorporates the ADX and Average functions. You may
have noticed the words crosses above and crosses below in these functions. These
are keywords that provide a shortcut:

if(Average(Close,mavLength1) crosses above Average(Close,mavLength2)) then

is the same as

if(Average(Close,mavLength1)[1] < Average(Close,mavLength2)[1] and
Average(Close,mavLength1) > Average(Close,mavLength2) then

Not only does this save on keystrokes, it also saves on potential typos. We
would suggest using these keywords whenever possible. This strategy uses the
ADX indicator to determine market trend and moving average crossover to
initiate positions. If the ADX determines the market is no longer trending, the
system looks to exit the market with a tight stop.

Embedded Functions
Inputs: movAvgLength1(9),channelLength(20);
value1 = Highest(Average(Close,movAvgLength1),channelLength);
value2 = Lowest (Average(Close,movAvgLength1),channelLength);
Buy tomorrow at value1 stop;
Sellshort tomorrow at value2 stop;

This extremely simple system demonstrates how EasyLanguage calls a func-
tion within another function call. EasyLanguage evaluates the function calls
from inside out. So, the following statement:

value1 = Highest(Average(Close,movAvgLength1),channelLength);

first calls the Average function using the closing prices for past nine days. The
Highest function is then called and evaluates the past individual 20 bars’ mov-
ing average values. It is hard to visualize how EasyLanguage evaluates the two
functions. Table 4.1 illustrates this process used to calculate value1.

Momentum, RSI-Based Strategy with Built-in Money Management
Inputs: momLength(14),rsiLength(14),protStop$(3000),
trailStopThresh$(3000),trailStopPrcnt(25);
if(Momentum(Close,momLength)>0 and RSI(Close,rsiLength) crosses below 60)
then
begin

buy("Mom+RetB")next bar at Lowest(Low,3) limit;
end;
if(Momentum(Close,momLength)<0 and RSI(Close,rsiLength) crosses above 40)
then
begin

72 Building Winning Trading Systems with TradeStation

www.fx1618.com



SellShort("Mom-RetS") next bar at Highest(High,3) limit;
end;
SetStopLoss(protStop$);
SetPercentTrailing(trailStopThresh$,trailStopPrcnt);

This strategy calls the Relative Strength Index (RSI) and Momentum func-
tions. The RSI determines overbought and oversold conditions, whereas the

TradeStation Analysis Techniques 73

Table 4.1
How TradeStation Calculates the Highest Moving Average Value

Day Close 9-Day Avg Max. of 20 Avg. Vals

1 94.50

2 95.25

3 94.00

4 93.50

5 94.00

6 94.25

7 95.00

8 95.50

9 95.75 94.64

10 96.00 94.81

11 95.00 94.78

12 95.25 94.92

13 95.00 95.08

14 94.50 95.14

15 93.75 95.08

16 92.50 94.81

17 91.75 94.39

18 92.25 94.00

19 93.00 93.67

20 93.25 93.47

21 93.50 93.28

22 94.00 93.17

23 94.25 93.14

24 94.50 93.22

25 95.00 93.50

26 95.50 93.92

27 96.25 94.36

28 96.75 94.78 95.14

29 97.00 95.19 95.19

30 97.25 95.61 95.61

www.fx1618.com



Momentum function determines trend direction. The strategy buys the market
when it senses a retracement from the short-term trend; momentum is positive
and the RSI is exiting the overbought region. Just the opposite is true for short-
ing the market. Again we used the keywords, crosses above and crosses below. You
will notice two new function calls: SetStopLoss and SetPercentTrailing.

SetStopLoss informs TradeStation to limit losses to the amount that is
passed to the function. In our code, that amount is $3000. This is yet another
shortcut that makes life a whole lot easier. You can, of course, program your
own protective stops. If you are using a simple fixed money management stop,
then we would suggest using this function to save programming time (well, not
all of the time—in the next paragraph, we explain situations where SetStop-
Loss is sometimes inaccurate).

SetPercentTrailing informs TradeStation to invoke a trailing stop after a
certain threshold of profit has been achieved. In our strategy, we set the thresh-
old to $3000. Once the threshold of profit is met, TradeStation will risk a spe-
cific percentage of maximum open profit. In our snippet of code we used 25
percent. This may be easier to understand with a concrete example. Let’s say
we entered a long S&P500 position at 1345.00 and the market went to 1357.00
($3000 open profit). TradeStation would then try to lock in $2250 (75% of
open profit) if the market went against our profit. If the market moves higher,
TradeStation will trail the high of the day in a fashion that will only risk 25
percent of total open profit. This is an effective trailing stop; the profit objec-
tive allows the market room to gyrate without premature trade termination.
There is a danger involved with this built-in trailing stop if you use too tight a
trailing stop percent on daily bars. This stop mechanism needs to know what
occurred first—the high or the low of the day; did the market open and then
move higher and pull our trailing stop up and then move down and stop us
out? Or did the market first move down and stop us out and then move up and
make new highs? This type of information cannot be discerned from a daily
bar. We like the concept of this type of stop, but to be as accurate as possible,
we would only use the SetPercentTrailing with intraday data. You can get
around this problem by programming the trailing stop yourself and by trailing
the stop from the high of the previous day. This would prevent the need for the
chronological order of the high and low of the day. This may cause you to lose
some historical back testing profit if today’s high goes higher than yesterday’s
high and then retraces back to the trailing stop (we have prevented TradeSta-
tion from exiting on the day a new high is made), but the accuracy of testing
should increase. While we are on the subject of accuracy, the SetStopLoss
function also suffers from this ailment. Any time you enter and exit on a daily
bar (other than entering on the open and exiting on the close), this type of
error can creep into your historical analysis. Keep in mind this only applies to
historical back testing on daily bars. If you back test on intraday data or trade
on real-time daily bars, this type of error will not occur. We discuss this prob-

74 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



lem and TradeStation’s attempt to solve it in Chapter 6. Figure 4.6 illustrates
an incorrect daily bar assumption.

User-Defined Percent Trailing Stop
Inputs: trailStopThresh$(3000),trailStopPrcnt(25);
Vars: maxPositionProf(0),longLiqPoint(0),prevMarketPosition(0);
If(MarketPosition <>prevMarketPosition) maxPositionProf = 0;
PrevMarketPosition = MarketPosition;
if(MarketPosition = 1) then
begin

maxPositionProf = MaxList(High – EntryPrice,maxPositionProf);
if(maxPositionProf*BigPointValue >= trailStopThresh) then
begin

longLiqPoint = EntryPrice + (maxPositionProf * (1-
trailStopPrcnt/100.0) );
sell ("TrailLongLiq") next bar longLiqPoint stop;

end;
end;

CONCLUSIONS

Several different forms of analysis techniques were discussed:

Indicator—a graphic representation of a mathematical calculation.
PaintBar and ShowMe—graphic demarcation of a mathematically-

based criterion.
Function—the most important programming component in the concepts

of reusable code and the dissemination of information.
Strategy—the natural conclusion of all of our programming knowledge.

This is the vehicle that we use to create a mechanical trading plan.

TradeStation Analysis Techniques 75

Figure 4.6 Incorrect Daily Bar Assumption

www.fx1618.com



We also touched upon the problems with back testing on daily bars. The best
rule of thumb for back testing on daily bars is to prevent entries and exits on
the same daily bar (unless your entry or exit is on the open or close of the bar).

The following chapters use this new knowledge to propel us into the
world of trading strategies (the guts and the glory). The remainder of the book
is where you will find its heart and soul. You will also find a ton of program-
ming code. This code should reinforce what you have already learned and also
take you well beyond the status of a beginning EasyLanguage programmer.

76 Building Winning Trading Systems with TradeStation

www.fx1618.com



77

5

Measuring Trading System
Performance and System

Optimization

Before you can design a good trading strategy, you must first know what one
is. The validity of a strategy is defined by its trading performance. In this chap-
ter, we cover the key performance statistics that separate the good strategies
from the bad. Today, with the use of TradeStation, EasyLanguage, and back-
adjusted data, we can test an infinite number of different strategies on thou-
sands of different tradable instruments. Twenty years ago only a handful of
people throughout the world had this power. Power can be used or abused. In
addition to performance statistics, the concepts of parameter robustness and
overoptimization are discussed.

Omega Research’s System Writer was one of the first software packages
to provide back testing capabilities and trading performance analysis. Through
the years and a couple of name changes, this software package has evolved. In
its latest incarnation, back testing has become much easier to facilitate, and the
number of trading performance statistics has increased ten-fold. Unfortu-
nately, throughout the years, one key analysis tool has not found its way into
TradeStation: portfolio analysis. We have the ability to microscopically ana-
lyze a trading strategy on a particular market, but we can’t analyze the interac-
tion of a strategy on a portfolio of different markets. Sure, we can have multiple
tests of a strategy on different markets, but we can’t see how trading several
markets simultaneously will affect the bottom line. To illustrate this point,
let’s assume that we have developed a trading strategy and we tested it on the
U.S. Bond and soybean markets. After applying the strategy to the two charts,
we end up with two performance reports. From these reports, we extract the
profit or loss and maximum draw-down figures (maximum draw down is
the biggest $ drop in account value—actual or paper loss). To get the total

www.fx1618.com



profit or loss of the two markets, we simply add these two results together. To
get the maximum draw down of the two markets, you can’t simply add the two
values together. Draw downs for anticorrelated markets almost always occur at
different times. Therefore, the overall maximum draw down of the two mar-
kets will always be equal to or less than the combined draw downs. This is the
magic of diversification. When you are looking at a single market analysis, you
don’t see the interaction of the other markets in your portfolio. If you are
actually trading the U.S. Bonds and soybeans, you know that these two markets
move independently of each other. If you are losing in a bond position, you
may be winning in a soybean position. In effect, offsetting a loser with a win-
ner. Table 5.1 illustrates the magic of diversification.

We feel this is a huge oversight. Fortunately, RINA Systems, a third-
party software developer, has created a solution for this problem. With their
software and TradeStation, you can test a basket of different commodities or
stocks and evaluate how a particular strategy performs at the portfolio level.
Since we have discussed portfolio analysis with such gusto, you may be ask-
ing, “Is testing a portfolio of markets simultaneously necessary in the deter-
mination of a good trading strategy?” The answer would be no. We feel that
even with this limitation, you can still develop a good strategy by testing
over a well-diversified portfolio. If a strategy tests well on most of the mar-
kets in a diversified portfolio, then you may have a good strategy. If a strat-
egy only does well in a small sector of markets that are highly correlated
(markets that move somewhat in unison), then you may have an okay system
that will probably generate higher draw downs. Testing markets on a simul-
taneous basis can give a more accurate initial capital allocation reading and
open the door for in-depth money management research. Even though we
can’t test at the portfolio level, let’s forge ahead and utilize the tools that are
available.

TRADESTATION’S SUMMARY 
REPORT

Let’s take a look at the performance statistics generated by TradeStation
by plotting a chart of 2000 daily bars of the Japanese Yen and applying
MyStrategy-1 (the first strategy we developed in Chapter 1). After you have
applied the strategy, go under the View menu and select view strategy perfor-
mance. Click on the Summary tab. A report similar to the one in Table 5.2
should show up on your screen.

This summary report has most of the statistics you need to help in your
search for a good trading strategy. There is a lot of information here, but some
of the statistics, in our opinion, are superfluous. We will only touch upon the
most influential ones.

78 Building Winning Trading Systems with TradeStation

www.fx1618.com



79

Ta
b

le
 5

.1
M

ag
ic

 o
f D

iv
er

si
fic

at
io

n

A
cc

o
un

t
U

.S
. B

o
n

d
s

A
cc

o
un

t
So

yb
ea

n
s

O
ve

ra
ll

St
ra

te
g

y 
A

$V
al

ue
D

ra
w

 D
o

w
n

$V
al

ue
D

ra
w

 D
o

w
n

$V
al

ue
D

ra
w

 D
o

w
n

Ja
n.

$1
,0

00
$0

$4
00

$0
$1

,4
00

0

Fe
b.

($
50

0)
($

1,
50

0)
$5

00
$0

$0
($

1,
40

0)

M
ar

ch
($

1,
00

0)
($

2,
50

0)
$7

00
$0

($
30

0)
($

1,
70

0)

A
p

ril
$2

50
($

2,
50

0)
$1

,2
00

$0
$1

,4
50

($
1,

70
0)

M
ay

$1
,0

00
($

2,
50

0)
$7

50
($

45
0)

$1
,7

50
($

1,
70

0)

Ju
ne

$3
,0

00
($

2,
50

0)
$2

50
($

95
0)

$3
,2

50
($

1,
70

0)

U
.S

 B
on

ds
So

yb
ea

ns
M

ax
. D

ra
w

 D
ow

n
($

2,
50

0)
M

ax
. D

ra
w

 D
ow

n
($

95
0)

O
ve

ra
ll

M
ax

. D
ra

w
 D

ow
n

($
1,

70
0)

www.fx1618.com



Table 5.2
Summary Performance of MyStrategy-1 on JY

TradeStation Strategy Performance Report

TradeStation Strategy Performance Report—MyStrategy-1 @ JY-Daily (4/28/94–4/11/02)

Performance Summary: All Trades

Total Net Profit $70,075.00000 Open position P/L ($2,125.00000)
Gross Profit $123,712.50000 Gross Loss ($53,637.50000)

Total # of trades 28 Percent profitable 39.29%
Number winning trades 11 Number losing trades 17

Largest winning trade $28,600.00000 Largest losing trade ($5,662.50000)
Average winning trade $11,246.59091 Average losing trade ($3,155.14706)
Ratio avg win/avg loss 3.56452 Avg trade (win & loss) $2,502.67857

Max consec. Winners 4 Max consec. losers 6
Avg # bars in winners 124 Avg # bars in losers 33

Max intraday drawdown ($18,137.50000)
Profit Factor 2.30646 Max # contracts held 1
Account size required $18,137.50000 Return on account 386.35%

Performance Summary: Long Trades

Total Net Profit ($2,087.50000) Open position P/L ($2,125.00000)
Gross Profit $37,987.50000 Gross Loss ($40,075.00000)

Total # of trades 14 Percent profitable 28.57%
Number winning trades 4 Number losing trades 10

Largest winning trade $13,687.50000 Largest losing trade ($5,662.50000)
Average winning trade $9,496.87500 Average losing trade ($4,007.50000)
Ratio avg win/avg loss 2.36978 Avg trade (win & loss) ($149.10714)

Max consec. Winners 2 Max consec. losers 5
Avg # bars in winners 93 Avg # bars in losers 29

Max intraday drawdown ($20,537.50000)
Profit Factor .94791 Max # contracts held 1
Account size required $20,537.50000 Return on account –10.16%

80 Building Winning Trading Systems with TradeStation

www.fx1618.com



Table 5.2
(Continued)

Performance Summary: Short Trades

Total Net Profit $72,162.50000 Open position P/L $0.00000
Gross Profit $85,725.00000 Gross Loss ($13,562.50000)

Total # of trades 14 Percent profitable 50.00%
Number winning trades 7 Number losing trades 7

Largest winning trade $28,600.00000 Largest losing trade ($4,325.00000)
Average winning trade $12,246.42857 Average losing trade ($1,937.50000)
Ratio avg win/avg loss 6.32074 Avg trade (win & loss) $5,154.46429

Max consec. Winners 4 Max consec. losers 3
Avg # bars in winners 141 Avg # bars in losers 39

Max intraday drawdown ($7,712.50000)
Profit Factor 6.32074 Max # contracts held 1
Account size required $7,712.50000 Return on account 935.66%

Measuring Trading System Performance and System Optimization 81

Total Net Profit

This performance statistic is the brass ring that most inexperienced strategy
developers reach for. You might think that a strategy that maximizes profit is
the way to go. If you had Bill Gates’ net worth, this would be true. Most traders
have limited capital and must monitor risk at all times. What’s wrong with a
strategy that makes $100,000 and has a $50,000 draw down? Doesn’t the end
justify the means? The one question that you must ask yourself when looking
at the performance of such a system is, “When did the draw down take place?”
Did it happen right off the bat when you only had $10,000 in trading capital?
Or did it happen after you have an additional 100K in the bank? If you don’t
have at least $50,000 in trading capital, then forget about it and go on with
your search. Also, this statistic tells you nothing about how the profits were dis-
tributed through time. Would you trade a strategy on a market that made all of
its money over a short period of time while it lost or was dormant for the rest
of the test period? Another question, which is better—A strategy that makes
$75,000 in the Nasdaq futures, or a strategy that makes $35,000 over the same
time period in soybeans. If you were to ask us this question, we would say the
soybean strategy. Sure it only made 46 percent as much as the Nasdaq system,

www.fx1618.com



but it did it with a market that has one tenth or less in dollar moves. This
implies a heck of a lot less risk. When you are developing strategies, use this
statistic as a benchmark and not an absolute goal. Of course, you want a strat-
egy with a positive expectation, but let’s use this statistic in concert with other
equally important statistics.

Maximum Intraday Draw Down

This statistic is equally important as Total Net Profit. However, the importance
is somewhat diluted if you are planning on trading a diverse portfolio. Maxi-
mum draw down (or should we refer to this as meltdown) is calculated by find-
ing the highest peak in the equity curve and subtracting the subsequent lowest
trough in the curve. In other words, how much money did an account value go
down before the account made a new equity high? There are two forms of max-
imum draw down: closed trade and open trade. Closed trade draw down occurs
after a trade is closed out, and open trade draw down occurs while a trade is still
on. Let’s say you are trading a long-term U.S. Bond strategy and that you have
a short position when the FED announces a surprise cut in interest rates.
Assume the surprise rate cut causes the bond futures market to rise three full
points by the end of the day. By this time your account value has dropped
$3000. You have just experienced an open trade draw down of $3000. Now, let’s
go a little further with our hypothetical scenario. The next morning after a few
hours of rumors, gossip, and information digestion, the bond market gaps down
a full point and over the next few days trades back down to your entry price.
The next few weeks the bond market trades in a range and you finally get out of
the position with a $500 loss. You have just experienced a closed trade draw
down of $500. Which figure do you think is more important? The open trade
draw down is more important to the trader with $2,000 than a trader with
$40,000. We feel that the maximum open trade draw down prepares a trader for
the worst-case scenario. TradeStation reports maximum draw down in this
manner. Total Net Profit equates to reward, whereas Maximum Draw Down
equates to risk. As a strategy developer and trader, you should try to maximize
the risk to reward ratio within your financial boundaries.

Account Size Required and Return on Account

You will probably notice that the Account Size Required statistic is the same as
the Maximum Intraday Draw Down. Basically, TradeStation is stating that an
account should be funded by the amount that the system has drawn down on a
historical basis. We feel this is insufficient. The industry rule of thumb for
funding a trading account is two or three times maximum draw down. You may
be wondering, why double or triple the worst-case scenario to come up with
the starting capital? If a system has been tested over many years, then shouldn’t

82 Building Winning Trading Systems with TradeStation

www.fx1618.com



the future maximum draw down fall in the range of historic parameters? This
type of thinking is what makes many stock and futures traders fail within the
first year of trading. You must understand that historic performance statistics
have the benefit of hindsight. Any system or indicator development requires a
certain level of curve fitting. Curve fitting is the testing, changing, retesting
process that a developer goes through to produce a winning system. There is
nothing wrong with this, unless you go overboard. Curve fitting customizes a
trading idea to the historical data. The more you curve fit, the more you force
history to repeat itself into the future. You may have thought the maximum
draw down was the worst-case scenario, when in fact you were looking through
rose-colored glasses. With this in mind, you should capitalize a trading account
sufficiently to endure more than just the historic maximum draw down. Again,
the lack of diversification analysis rears its ugly head. Remember when we
touched upon this subject and demonstrated that overall maximum draw down
can be reduced by trading diversified markets; this figure does not take diver-
sification into consideration. If you were to trade ten different and diverse
markets, should you go through and add up the individual maximum draw
downs to calculate the initial account funding? We think this is overkill and a
nonefficient use of capital. We know we just said that this figure alone is not
sufficient enough to fund a trading account, and now we are saying that if you
sum all of the maximum draw downs it would be overkill. Recall though that
we did state if you were trading a diverse portfolio, this summation of maxi-
mum draw down would be inefficient use of capital. If you are trading four for-
eign currencies, then it may not be a bad formula of initial capital allocation.
For these reasons, we feel this statistic is basically useless. The Return On
Account would also fall into the useless camp.

Average Trade

This statistic is the average profit or loss that you can expect on any given trade.
The key word is expect. If you trade a statistically significant number of times
and take the average of your profits (or losses), then you should come close to
this figure, theoretically speaking that is. You could rely more on this statistic if
back testing did not incorporate the benefit of hindsight and trade results were
normally distributed. Nonetheless, normal distribution statistics are what we
have and we must use what we have. The importance of this statistic increases
with the number of real-time trades; the assumption of normal distribution
doesn’t go away, but the benefit of hindsight lessens. Of course, the higher the
average trade, the better. Many traders incorrectly place more emphasis on per-
centage of winning trades than they do on average trade. Intuitively, you may
think a system that doesn’t have at least 50 percent wins is a loser. This is not
the case. In fact, most profitable trading systems have much less than 50 percent
winners. Of the following two systems, which would you trade?

Measuring Trading System Performance and System Optimization 83

www.fx1618.com



System A System B
First Trade –$200 $100
Second Trade –$150 $75
Third Trade $400 $125
Fourth Trade $500 $50
Fifth Trade $1000 $25
Average Trade $310 $75
Percent Wins 60 100

Maximum Consecutive Winners and Losers

These two statistics are used more as psychological tools than analysis tools.
Consecutive losers are, from a psychological standpoint, the aspect of trading
that forces most traders to call it quits. Can a typical trader sit through 15 con-
secutive losing trades? It doesn’t matter that the trades don’t add up to be a big
loss. It’s the loss in confidence that gnaws away at your trading plan. If you can
live with historic consecutive losses plus a few more and the other performance
statistics are within your risk-reward parameters, then you know that you may
have a good fit with your system.

Number of Trades and Average Number of Bars Per Trade

These two statistics indicate how often a trading system trades and how long
one might hold on to a position. If you like a lot of action, then you would want
a system that trades frequently and gets out quickly. If you are more of a slow
mover, then you would want a system that trades infrequently and holds on to
a position for a longer time period. In our experience, the latter type system is
usually the best. The system that trades more frequently must be more prof-
itable due to the increase costs of trade executions. Let’s say a system trades ten
times a year at a cost of $50 a trade. The system must make $500 before it
shows any profit. On the other hand, a system that trades five times a year with
an associated cost of $50 only needs to clear $250 before it is profitable.

Average Winning and Losing Trade

These statistics inform us of the magnitude of money that we can expect to win
or lose on average over an extended trading period. Can you make money with
a system that has a smaller average win than average loss? Absolutely, if the
percentage of winning trades is much greater than percentage of losing trades
you can. Typical trading systems have less than 50 percent wins and an aver-
age winning trade that is greater than the average losing trade. The better

84 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



trend following systems will take little bites at the market until a big trend
occurs. These systems may only win 30 percent of the time, but their average
win is three or more times the size of their average loss. Since shorter-term sys-
tems are in the market for small amounts of time, their average wins will be
much smaller than a system that holds on to a position for months at a time.

TradeStation gives almost the exact same statistics on long trades and
short trades. This is potentially a nice feature. As a trader, you may want to
know if you made all of your money on the long side or the short side. Let’s
say, hypothetically, that you were designing a trading system and discovered
that you made four times as much on the long side as you did on the short side.
As a system developer and potential trader, what would you do with this infor-
mation? You could change your system to trade less on the short side or trade
more on the long side. By doing so, you could make the historical track record
look even better. The system developer side of you thinks this is great! The
trader side of you doubts the validity of the optimization. Optimization? What
optimization? Is it not true that you changed a parameter or two to better-fit
history? You try to rationalize your decision to optimize by explaining to your
trader side that history has proven itself over many years. The system devel-
oper side can’t help that the market has had a bullish bias for more than eight
years. The trader side gives in because it can’t argue with an empirical test. So,
after months of saving money for trading capital, you plunk your $50,000 down
and start trading your optimized trading system. The date is January 3,
2000 and the rest is history. Of course, hindsight is 20/20—but that was what
you were betting on. We feel that a trading system should be as symmetric (buy
rules are just the opposite of sell rules) as possible. We know and believe that
bull markets move differently than bear markets. But, we also feel that a trading
system should be equipped for any possible circumstances. So, use this infor-
mation along with the other statistics. Don’t change your trading system or style
to try and take advantage of any divergence between long and short profits.

TRADES

If you click on the Trades tab at the bottom of the Performance Report win-
dow, a different window will pop up giving you trade-by-trade statistics. You
can choose standard view or advanced. First let’s take a look at the advanced
view. (You can do this by selecting Adv. from the top left combo box.) Your
screen should look somewhat similar to Table 5.3.

Every trade statistic that you could possibly want is given here: signal,
entry date and price, exit date and price, profit/loss, percent profit, cumulative
profit, commission, slippage, run-up, draw down, entry and exit efficiency, and
total efficiency. The key statistics in this report are individual trade run-up
and draw down, entry and exit efficiencies, and total trade efficiency.

Measuring Trading System Performance and System Optimization 85

www.fx1618.com



Ta
b

le
 5

.3
A

dv
an

ce
d 

Tr
ad

e 
by

 T
ra

de
 A

na
ly

si
s 

of
 M

yS
tr

at
eg

y-
1

Tr
ad

e 
#

C
o

n
tr

ac
ts

%
 P

ro
fi

t
R

un
-u

p
En

tr
y 

Ef
f.

To
ta

l
Ty

p
D

at
e

Ti
m

e
Pr

ic
e

Si
g

n
al

Pr
o

fi
t

C
um

 P
ro

fi
t

C
o

m
m

is
s.

Sl
ip

p
ag

e
D

ra
w

 D
o

w
n

Ex
it

 E
ff

.
Ef

fi
ci

en
cy

1
10

/1
0/

94
00

:0
0

1.
32

86
0

Sh
or

t
1

(2
.6

0%
)

$0
.0

0
$0

.0
0

12
.5

0
0.

29
%

Se
ll

10
/1

9/
94

00
:0

0
1.

36
32

0
Bu

y
(4

32
5.

00
)

(4
32

5.
00

)
0.

00
0.

00
(4

32
5.

00
)

(0
.0

0%
)

(9
9.

71
%

)

2
10

/1
9/

94
00

:0
0

1.
36

32
0

Bu
y

1
(2

.5
5%

)
$0

.0
0

$0
.0

0
14

00
.0

0
24

.4
0%

Bu
y

12
/2

/9
4

00
:0

0
1.

32
85

0
Sh

or
t

(4
33

7.
50

)
(8

66
2.

50
)

0.
00

0.
00

(4
33

7.
50

)
(0

.0
0%

)
(7

5.
60

%
)

3
12

/2
/9

4
00

:0
0

1.
32

85
0

Sh
or

t
1

(1
.6

9%
)

$0
.0

0
$0

.0
0

18
75

.0
0

40
.1

1%

Se
ll

2/
16

/9
5

00
:0

0
1.

35
09

0
Bu

y
(2

80
0.

00
)

(1
14

62
.5

0)
0.

00
0.

00
(2

80
0.

00
)

(0
.0

0%
)

(5
9.

89
%

)

4
2/

16
/9

5
00

:0
0

1.
35

09
0

Bu
y

1
7.

48
%

$0
.0

0
$0

.0
0

26
00

0.
00

97
.9

7%

Bu
y

7/
10

/9
5

00
:0

0
1.

45
19

0
Sh

or
t

12
62

5.
00

11
62

.5
0

0.
00

0.
00

(5
37

.5
0)

49
.6

0%
47

.5
7%

5
7/

10
/9

5
00

:0
0

1.
45

19
0

Sh
or

t
1

15
.7

6%
$0

.0
0

$0
.0

0
33

52
5.

00
97

.5
6%

Se
ll

4/
29

/9
6

00
:0

0
1.

22
31

0
Bu

y
28

60
0.

00
29

76
2.

50
0.

00
0.

00
(8

37
.5

0)
85

.6
7%

83
.2

3%

6
4/

29
/9

6
00

:0
0

1.
22

31
0

Bu
y

1
(3

.5
9%

)
$0

.0
0

$0
.0

0
50

.0
0

0.
90

%

Bu
y

5/
28

/9
6

00
:0

0
1.

17
92

0
Sh

or
t

(5
48

7.
50

)
24

27
5.

00
0.

00
0.

00
(5

48
7.

50
)

0.
00

%
(9

9.
10

%
)

7
5/

28
/9

6
00

:0
0

1.
17

92
0

Sh
or

t
1

(0
.6

8%
)

$0
.0

0
$0

.0
0

31
25

.0
0

60
.6

8%

Se
ll

7/
31

/9
6

00
:0

0
1.

18
72

0
Bu

y
(1

00
0.

00
)

23
27

5.
00

0.
00

0.
00

(2
02

5.
00

)
19

.9
0%

(1
9.

42
%

)

86www.fx1618.com



8
7/

31
/9

6
00

:0
0

1.
18

72
0

Bu
y

1
(2

.5
7%

)
$0

.0
0

$0
.0

0
50

0.
00

11
.5

9%

Bu
y

9/
10

/9
6

00
:0

0
1.

15
67

0
Sh

or
t

(3
81

2.
50

)
19

46
2.

50
0.

00
0.

00
(3

81
2.

50
)

(0
.0

0%
)

(8
8.

41
%

)

9
9/

10
/9

6
00

:0
0

1.
15

67
0

Sh
or

t
1

9.
71

%
$0

.0
0

$0
.0

0
19

28
7.

50
95

.7
2%

Se
ll

5/
9/

97
00

:0
0

1.
04

44
0

Bu
y

14
03

7.
50

33
50

0.
00

0.
00

0.
00

(8
62

.5
0)

73
.9

5%
69

.6
7%

10
5/

9/
97

00
:0

0
1.

04
44

0
Bu

y
1

2.
36

%
$0

.0
0

$0
.0

0
85

75
.0

0
87

.7
2%

Bu
y

7/
15

/9
7

00
:0

0
1.

06
91

0
Sh

or
t

30
87

.5
0

36
58

7.
50

0.
00

0.
00

(1
20

0.
00

)
43

.8
6%

31
.5

9%

11
7/

15
/9

7
00

:0
0

1.
06

91
0

Sh
or

t
1

8.
33

%
$0

.0
0

$0
.0

0
17

28
7.

50
90

.9
3%

Se
ll

1/
27

/9
8

00
:0

0
.9

80
00

Bu
y

11
13

7.
50

47
72

5.
00

0.
00

0.
00

(1
72

5.
00

)
67

.6
5%

58
.5

8%

12
1/

27
/9

8
00

:0
0

.9
80

00
Bu

y
1

(3
.2

3%
)

$0
.0

0
$0

.0
0

20
50

.0
0

34
.1

0%

Bu
y

3/
16

/9
8

00
:0

0
.9

48
30

Sh
or

t
(3

96
2.

50
)

43
76

2.
50

0.
00

0.
00

(3
96

2.
50

)
(0

.0
0%

)
(6

5.
90

%
)

13
3/

16
/9

8
00

:0
0

.9
48

30
Sh

or
t

1
6.

25
%

$0
.0

0
$0

.0
0

13
51

2.
50

93
.0

3%

Se
ll

9/
1/

98
00

:0
0

.8
89

00
Bu

y
74

12
.5

0
51

17
5.

00
0.

00
0.

00
(1

01
2.

50
)

58
.0

0%
51

.0
3%

14
9/

1/
98

00
:0

0
.8

89
00

Bu
y

1
12

.3
2%

$0
.0

0
$0

.0
0

22
63

7.
50

96
.2

3%

Bu
y

2/
16

/9
9

00
:0

0
.9

98
50

Sh
or

t
13

68
7.

50
64

86
2.

50
0.

00
0.

00
(8

87
.5

0)
61

.9
6%

58
.1

8%

15
2/

16
/9

9
00

:0
0

.9
98

50
Sh

or
t

1
2.

15
%

$0
.0

0
$0

.0
0

82
12

.5
0

74
.8

3%

Se
ll

7/
22

/9
9

00
:0

0
.9

77
00

Bu
y

26
87

.5
0

67
55

0.
00

0.
00

0.
00

(2
76

2.
50

)
49

.6
6%

24
.4

9%

16
7/

22
/9

9
00

:0
0

.9
77

00
Bu

y
1

7.
03

%
$0

.0
0

$0
.0

0
14

46
2.

50
93

.4
6%

Bu
y

1/
7/

00
00

:0
0

1.
04

57
0

Sh
or

t
85

87
.5

0
76

13
7.

50
0.

00
0.

00
(1

01
2.

50
)

62
.0

4%
55

.4
9%

87www.fx1618.com



Individual trade run-up is the total profit amount of your position before
the trade was closed out. Individual trade draw down is the total amount that
your position was against you before it was closed out. If you notice that your
actual profit is considerably less than your run-up profit, then you know that
you are leaving too much on the table. You should work on an exit mechanism
that locks into a larger portion of the larger run-ups. The draw down figure
gives insight into how much the market may move against an eventual prof-
itable trade. In addition, if the draw down figures are too large on an individ-
ual basis for you to stomach, then you may want to move on to another system.
These two statistics are also known as favorable and adverse trade excursion,
respectively. Many people feel these statistics are key in the development of
trade management techniques. The entry, exit, and total efficiency statistics are
all based on the favorable and adverse excursions. The entry efficiency mea-
sures how close the entry price was to the best possible entry price during the
trade. If a trade only goes slightly in your favor and then closes out with a siz-
able loss, then your entry efficiency will be at a low level (entry/exit efficiencies
range between 0% and 100%). The exit efficiency measures how close the exit
price was to the best possible exit price during the trade. If a big winner turns
into a loser or small winner, then this efficiency will also be at a low level. The
total efficiency measures the amount of profit captured from the total extremes
of the market during the trade duration. This number can be either positive or
negative, based on the result of the trade. According to our numbers on
MyStrategy-1 on the Japanese Yen, our approach is not very efficient. This can
be attributed to the lack of a money management plan. Nonetheless, it is still
overall quite profitable. All of these statistics can give in-depth insight into
your trade management methodology. For further information on trade-by-
trade excursions and efficiencies, we highly recommend John Sweeney’s,
“Maximum Adverse Excursion: Analyzing Price Fluctuations for Trading
Management” ( John Wiley & Sons, Wiley Trader’s Advantage Series, 1997).
This report will help you verify your translation of trading idea into a mechan-
ical system. If you know that a trade should occur on a certain day at a certain
price and it doesn’t show up in the trade-by-trade report, then you know that
you haven’t accurately programmed your ideas.

ANALYSIS

Click on the Analysis tab and you will be presented with a report like the one
in Table 5.4. This report is a statistician’s dream. Every statistic under the sun
is located in this report. You will recognize many of the statistics from the
Summary report. Again, we will only go over the more relevant ones.

The profit factor is calculated by simply dividing the gross profit by the
gross loss. This factor tells us how many dollars you can expect to win for every

88 Building Winning Trading Systems with TradeStation

www.fx1618.com



Ta
b

le
 5

.4
A

na
ly

si
s 

of
 M

yS
tr

at
eg

y-
1

Tr
ad

eS
ta

ti
o

n
 S

tr
at

eg
y 

Pe
rf

o
rm

an
ce

 R
ep

o
rt

Tr
ad

eS
ta

ti
o

n
 S

tr
at

eg
y 

Pe
rf

o
rm

an
ce

 R
ep

o
rt

 -
 M

yS
tr

at
eg

y-
1 

@
JY

-D
ai

ly
 (

4/
28

/9
4-

4/
11

/0
2)

 (
4/

28
/9

4-
4/

11
/0

2)

ST
R

A
TE

G
Y

 A
N

A
LY

SI
S

N
et

 P
ro

fit
$7

0,
07

5.
00

00
0

O
p

en
 P

os
iti

on
($

2,
12

5.
00

00
0)

G
ro

ss
 P

ro
fit

$1
23

,7
12

.5
00

00
In

te
re

st
 E

ar
ne

d
$2

02
.7

39
73

G
ro

ss
 L

os
s

($
53

,6
37

.5
00

00
)

C
om

m
is

si
on

 P
ai

d
$0

.0
00

00

Pe
rc

en
t 

p
ro

fit
ab

le
39

.2
9%

Pr
of

it 
fa

ct
or

2.
31

Ra
tio

 a
vg

. w
in

/a
vg

. l
os

s
3.

56
A

dj
us

te
d 

p
ro

fit
 fa

ct
or

1.
30

A
nn

ua
l R

at
e 

of
 R

et
ur

n
21

.7
2%

Sh
ar

p
e 

Ra
tio

0.
39

Re
tu

rn
 o

n 
In

iti
al

 C
ap

ita
l

35
0.

38
%

Re
tu

rn
 R

et
ra

ce
m

en
t 

Ra
tio

1.
29

Re
tu

rn
 o

n 
M

ax
. D

ra
w

do
w

n
28

0.
02

%
K-

Ra
tio

2.
61

Bu
y/

H
ol

d 
re

tu
rn

–
44

.4
7%

RI
N

A
 In

de
x

16
.6

2

C
um

ul
at

iv
e 

re
tu

rn
35

0.
38

%
Pe

rc
en

t 
in

 t
he

 m
ar

ke
t

97
.4

5%

A
dj

us
te

d 
N

et
 P

ro
fit

$1
9,

76
5.

27
32

0
Se

le
ct

 N
et

 P
ro

fit
$4

1,
47

5.
00

00
0

A
dj

us
te

d 
G

ro
ss

 P
ro

fit
$8

6,
41

1.
77

77
8

Se
le

ct
 G

ro
ss

 P
ro

fit
$9

5,
11

2.
50

00
0

A
dj

us
te

d 
G

ro
ss

 L
os

s
($

66
,6

46
.5

04
59

)
Se

le
ct

 G
ro

ss
 L

os
s

($
53

,6
37

.5
00

00
)

(C
on

tin
ue

s)

89www.fx1618.com



90

Ta
b

le
 5

.4
(C

on
tin

ue
d)

TO
TA

L 
TR

A
D

E 
A

N
A

LY
SI

S

N
um

be
r 

of
 t

ot
al

 t
ra

de
s

28

A
ve

ra
ge

 t
ra

de
$2

,5
02

.6
78

60
A

vg
. t

ra
de

 ±
1 

ST
D

EV
$1

0,
99

0.
41

/ 
($

5,
98

5.
05

44
9)

1 
St

d.
 D

ev
ia

tio
n 

(S
TD

EV
)

$8
,4

87
.7

33
09

C
oe

ffi
ci

en
t 

of
 v

ar
ia

tio
n

33
9.

15
%

R
un

-u
p

M
ax

im
um

 R
un

-u
p

$3
3,

52
5.

00
00

0
M

ax
. R

un
-u

p
 D

at
e

4/
11

/9
6

A
ve

ra
ge

 R
un

-u
p

$7
,8

64
.2

24
10

A
vg

. t
ra

de
 ±

1 
ST

D
EV

$1
7,

02
9.

16
22

2
/ 

$0
.0

00
00

1 
St

d.
 D

ev
ia

tio
n 

(S
TD

EV
)

$9
,1

64
.9

38
12

C
oe

ffi
ci

en
t 

of
 v

ar
ia

tio
n

11
6.

54
%

D
ra

w
d

o
w

n

M
ax

im
um

 D
ra

w
do

w
n

($
6,

50
0.

00
00

0)
M

ax
. D

ra
w

do
w

n 
D

at
e

8/
8/

94

A
ve

ra
ge

 D
ra

w
do

w
n

($
2,

56
0.

34
48

0)
A

vg
. t

ra
de

 ±
1 

ST
D

EV
($

94
7.

42
24

1)
/ 

($
4,

17
3.

26
71

9)

1 
St

d.
 D

ev
ia

tio
n 

(S
TD

EV
)

$1
,6

12
.9

22
39

C
oe

ffi
ci

en
t 

of
 v

ar
ia

tio
n

63
.0

0%

R
ew

ar
d

/R
is

k 
R

at
io

s

N
et

 P
rf

t/
La

rg
es

t 
Lo

ss
12

.3
8

N
et

 P
rf

t/
M

ax
 D

ra
w

do
w

n
10

.7
8

A
dj

 N
et

 P
rf

t/
La

rg
es

t 
Lo

ss
3.

49
A

dj
 N

et
 P

rf
t/

M
ax

 D
ra

w
do

w
n

3.
04

O
ut

lie
r 

Tr
ad

es
To

ta
l T

ra
d

es
Pr

o
fi

t/
Lo

ss

Po
si

tiv
e 

ou
tli

er
s

1
$2

8,
60

0.
00

00
0

N
eg

at
iv

e 
ou

tli
er

s
0

$0
.0

00
00

To
ta

l o
ut

lie
rs

1
$2

8,
60

0.
00

00
0

www.fx1618.com



91

EF
FI

C
IE

N
C

Y
 A

N
A

LY
SI

S

To
ta

l E
ff

ic
ie

n
cy

A
ve

ra
ge

 T
ot

al
 E

ffi
ci

en
cy

–1
6.

31
%

A
vg

. t
ra

de
 ±

1 
ST

D
EV

47
.2

4%
/ 

–7
9.

86
%

1 
St

d.
 D

ev
ia

tio
n 

(S
TD

EV
)

63
.5

5%
C

oe
ffi

ci
en

t 
of

 v
ar

ia
tio

n
38

9.
63

%

En
tr

y 
Ef

fi
ci

en
cy

A
ve

ra
ge

 E
nt

ry
 E

ffi
ci

en
cy

57
.1

2%
A

vg
. t

ra
de

 ±
1 

ST
D

EV
92

.4
7%

/ 
21

.7
6%

1 
St

d.
 D

ev
ia

tio
n 

(S
TD

EV
)

35
.3

6%
C

oe
ffi

ci
en

t 
of

 v
ar

ia
tio

n
61

.9
1%

Ex
it

 E
ff

ic
ie

n
cy

A
ve

ra
ge

 E
xi

t 
Ef

fic
ie

nc
y

26
.5

8%
A

vg
. t

ra
de

 ±
1 

ST
D

EV
57

.9
5%

/ 
–

4.
80

%

1 
St

d.
 D

ev
ia

tio
n 

(S
TD

EV
)

31
.3

7%
C

oe
ffi

ci
en

t 
of

 v
ar

ia
tio

n
11

8.
05

%

O
PE

N
 P

O
SI

TI
O

N
 A

N
A

LY
SI

S

O
p

en
A

ve
ra

g
e

Pe
rc

en
t

Po
si

ti
o

n
Tr

ad
e

o
f 

A
ve

ra
g

e

U
nr

ea
liz

ed
 P

ro
fit

/L
os

s
($

2,
12

5.
00

00
0)

$2
,5

02
.6

78
60

–1
84

.9
1%

Ti
m

e 
in

 t
ra

de
 (

D
ay

s)
36

.0
0

99
.8

2
36

.0
6%

www.fx1618.com



dollar you lose. Since the profit factor is a ratio, you can compare this statistic
between other markets. Other statistics, like total profit and maximum draw
down, cannot be directly compared with the same statistics from different mar-
kets. When you compare the results of a system tested on the NASDAQ with
the results of the same system tested on the soybean market, you are compar-
ing apples to oranges. The profit factor is normalized between different mar-
kets. When evaluating a trading strategy performance across a broad spectrum
of markets, we would skip the total profit as the only guiding factor for port-
folio selection. We would use the profit factor to compare one market equally
against another.

The adjusted profit factor is an even better performance statistic.
Adjusted profit factor is calculated by dividing adjusted gross profit by adjusted
gross loss. Adjusted gross profit/loss is calculated by subtracting/adding the
square root of winning/losing trades from the total number of winning/losing
trades and multiplying the result by the average winning/losing trade, that is,
deflating profit and inflating loss. Why do this you may ask? Simulated analy-
sis of trading will never accurately match real-time trading. Also, there are
instances when you get an outlier trade that skews the performance statistic. If
you scroll down the Analysis report, you will find the Outlier Trade analysis.
Outlier trades are ones that are several standard deviations away from the aver-
age winning or average losing trade. These trades usually occur out of pure
luck and, therefore, shouldn’t be built into our expectations. In the case of
MyStrategy-1, you will notice one $28,600 win. Should you count on this hap-
pening again? If you can cut your expectations down, then you can approach
trading from a less than best-case scenario. We like to approach a new trading
strategy from a worst-case perspective.

A trading strategy should provide consistency in equity growth. Who
would trade a strategy that makes all of its money on a small number of trades?
The Sharpe ratio describes a strategy’s consistency. Subtracting the risk-free
interest from the average monthly return and dividing by the standard devia-
tion of the monthly returns calculates the official Sharpe ratio. The higher the
ratio, the more consistent your returns. Again, this is a normalized statistic and
can be used to compare different strategies or markets. The K-Ratio is similar
to the Sharpe ratio in that it measures consistency by using linear regression
techniques and, therefore, has a different scale factor.

The Rina Index is a proprietary calculation that takes net profit, average
draw down, and percent time in market into consideration. A Rina Index above
30 usually points to a productive trading strategy. This index comes from
the same company (Rina Systems) that offers the third-party add-on for port-
folio analysis. Their software also helps with performance analysis.

Did you beat the old buy and hold routine? This Buy and Hold statistic
is also given, but it really isn’t an informative statistic outside of the world of
stocks or stock indices. The Total Trade Analysis section of this report also

92 Building Winning Trading Systems with TradeStation

www.fx1618.com



gives some good information. You can find out the standard deviations of the
average trade, average run-up, and average draw down. These figures may
more accurately guide you in allocating initial trading capital. All of TradeSta-
tion’s reports can be saved in Microsoft Excel format. This is a great feature for
two reasons. First, the general public can open and read the reports without
owning TradeStation. Secondly, Microsoft Excel opens another enormous
library of analytical tools that can be used with the reports.

GRAPHS

There are other reports that we haven’t discussed that you can select by
clicking on their respective tabs. We feel that all TradeStation users should
familiarize themselves with these reports. We could write an entire book on
the information that is presented in this research, but we really don’t want to
bore you more than you already are. Sometimes you can research an idea to
death. The last report that we will discuss is the Graphs report. This report
along with the Summary, Analysis and Trades should give you all of the infor-
mation that you need to determine the validity and robustness of a trading sys-
tem. Go ahead and click on the Graphs tab. A chart similar to Figure 5.1
should now appear on your screen.

Measuring Trading System Performance and System Optimization 93

Figure 5.1 Equity Curve of MyStrategy-1

www.fx1618.com



Again, there is a plethora of different types of information at your dis-
posal. We will confine our discussion to equity graphs. The graph in Figure 5.1
illustrates the distribution of returns over the test period. This curve doesn’t
look that bad; it is somewhat smooth and sloping upward. The equity scale on
the left starts out at $100,000, but can be changed by clicking on the Format
window icon in the top right corner of the window (the one with the hand in
it). You can change the format of all the reports by clicking on this icon and
changing the parameters from the dialog box. Go ahead and click on this icon.
A dialog box similar to the one in Figure 5.2 should pop up on your screen.

Go to the Initial Capital field and change the setting from $100,000 to $0.
While we are in here, we may as well change the number of Decimal Places.
Let’s change this setting to 5. We did this so that we can get accurate prices in
our Trades report. Click on OK and we should be back to our equity graph.
Our changes may not have been reflected in the graph, so go ahead and
click on the refresh icon (the icon with the two small arrows). You should now
see our equity graph starting out at around $0.

Let’s change the type of Equity Graph. Click on the right down arrow
and select Detailed Equity Curve. The first curve shows cumulative profit on
a trade-by-trade basis. The second equity curve shows cumulative profit on a
daily basis. You can see the real intratrade draw downs with this graph. We like
this type of equity curve best. Go back up to the right down arrow and select
Underwater Equity Curve. A graph similar to Figure 5.3 should be on your
screen.

94 Building Winning Trading Systems with TradeStation

Figure 5.2 Properties of Performance Reports

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



Before we explain the meaning behind this graph, let’s go back to the For-
mat window icon and change the initial capital back to $20,000. Remember to
hit the refresh icon (the icon with the two arrows). This graph plots the draw
downs that were experienced by our strategy during the life of the test. As
you can see from the graph, we had some substantial periods of losses. This
graph can really open your eyes to risk. From this graph, we can see that the
strategy nearly blows us out of the water from the beginning. From that point
on, we had several draw downs of differing levels. On average, it looks like we
had draw downs equal to 20 percent of our initial capital. Once again, click on
the right down arrow and select Monthly Net Profit. Another chart like the
one in Figure 5.4 will fill your screen.

This chart plots the net monthly profits during the life of our test. Again,
this may be useful information to help you decide on a strategy’s validity
and/or fund allocation. You may want to investigate the other graphs and
charts. You may come across one that you like better than the ones that we
have presented.

We hope this brief introduction to trading performance measurements
has given you a base education to build on. We feel that with this education,
you are prepared to differentiate between a good strategy and one that is not
so good. There are several books written on this subject and we would recom-

Measuring Trading System Performance and System Optimization 95

Figure 5.3 Underwater Equity Curve of MyStrategy-1

www.fx1618.com



mend reading most of them. Tushar Chande’s and Thomas Stridsman’s books
should be in every traders library.

OPTIMIZATION

Now that we know some of the statistics that are used in trading system per-
formance, let’s see if we can make MyStrategy-1 a better strategy through the
use of optimization. You may be asking, “What is optimization?” Optimization
is the process of finding the optimum parameter through repeated testing of a
strategy using different parameter values. In MyStrategy-1, we have two input
variables: longLength and shortLength. These variables determine our exact
buy and sell points. Recall when we first programmed MyStrategy-1 in Chap-
ter 1. The strategy goes long when the high of today exceeds the high of the
past longLength days and goes short when the low of today exceeds the low of
the past shortLength days. We set these inputs to 40 (a somewhat arbitrary
value, picked without doing much research). The optimization process will
automatically change our longLength and shortLength variables (within the
boundaries that we set) and re-run the strategy on the different set of parame-
ters. The end result will be a report of the different tests on the different para-

96 Building Winning Trading Systems with TradeStation

Figure 5.4 Monthly Net Profits of MyStrategy-1

www.fx1618.com



meters. It is up to us to pick the parameter set that we eventually use.
TradeStation offers a simple way to optimize a trading strategy. However, you
must prepare your strategy for optimization. When initially programming a
strategy, you may want to keep in mind the variables that you may want to
optimize in the future. We did this with MyStrategy-1 by making the two opti-
mizable parameters (longLength and shortLength) Input variables. Input vari-
ables are the only ones that can be optimized. Let’s go ahead and optimize
MyStrategy-1 on the Japanese Yen.

Make sure that the Japanese Yen continuous chart with MyStrategy-1
applied to it is active. If it is not open, just go ahead and recreate a Japanese Yen
continuous chart with at least 2000 days of history. After the chart appears on
your screen, apply MyStrategy-1 to it. Go under the Format menu and select
Format Strategies. A dialog box that looks like Figure 5.5 will be on your
screen.

Click on the Inputs button and another dialog box title Inputs will open.
It will be similar to the one in Figure 5.6.

Click on longLength and then click the optimize button and yet another
dialog box will open. Don’t blame us, this is the true benefit of a graphical user
interface (GUI)-driven application. The GUI allows you to make changes
through an infinite number of dialog boxes. You should have a dialog box
titled Optimize as the top window on your screen. You should see the number

Measuring Trading System Performance and System Optimization 97

Figure 5.5 Format Strategies on MyStrategy-1

www.fx1618.com



20 in the Start box, the number 60 in the Stop box, and the number 4 in the
Increment box. Basically, this dialog box is telling us that TradeStation will
repeatedly test the longLength parameter starting at the value of 20 and incre-
menting it by 4 until it reaches 60. The first test would set longLength to 20
and the next test would set longLength to 24 and so on. Use the following for-
mula to determine the number of tests or iterations: (Stop – Start)/Increment
+ 1. By substituting our values into the formula, we come up with (60 – 20)/
4 + 1 = 11. The number of tests is more important than you may think.
Remember, we have two optimizable parameters. How many tests will be nec-
essary to test both parameters simultaneously over our optimization range? Did
you say 121 (11×11)? This is why the number of tests is important. The total
number of tests increases in a geometric fashion. If we had three parameters and
wanted to test over the same optimization range, it would be a total of 11×11×11
tests. Even with today’s computing power, this could take a while. Go ahead and
click OK and select the shortLength parameter and click the optimize button.
You know the routine. Set this parameter optimization range to be the same as
longLength. Click OK to get out of the Input dialog box. You should be back to
the Format Strategy dialog box. Gentlemen start your engines. Let’s get opti-
mizing by clicking on the Optimize button. You may get an alert that says
something like you tried to reference too many bars back. Basically, you crashed
in turn number one. The whole optimization run is halted and you must go up

98 Building Winning Trading Systems with TradeStation

Figure 5.6 Inputs of MyStrategy-1

www.fx1618.com



under the Format menu and select Format Strategy. Once the all too familiar
dialog box comes up (you may have to click the Status button to activate the
strategy and then you will need to click on the Format button). In the resulting
dialog box, you will see Maximum number of bars study will reference. Change this
to 60, so that we have enough historic data to do our optimization. Click OK
and go through changing optimization values for the inputs. After you have
done this, go ahead and hit the Optimize button again. It would be great if
TradeStation handled this for you, but it doesn’t. Once everything is set up
properly and we are in the optimization process, TradeStation will keep us
informed of the status of the process. It tells us the amount of elapsed time, esti-
mated completion time, total number of runs, and current run number. It also
tells us the maximum profit attained by optimizing the parameters. The opti-
mization that we prescribed for MyStrategy-1 shouldn’t take that long. Once
completed, go under the View menu and select Strategy Optimization Report.
This will create a spreadsheet like the one in Table 5.5.

This optimization report gives the statistics on each and every run. If you
scroll down to the bottom of the report, you will notice 121 individual runs.
The optimization process is quite simple compared to the search-for-robust-
parameters process. In our optimization report, there is a ton of information to
filter through. Should we pick the parameter set that has the most profit or
smallest draw down or highest profit factor? Unfortunately, there is no black-
and-white rule for picking the best parameters. Uncovering the best parame-
ter set can be an exhaustive process of elimination. This process involves
sorting, graphing, and the eventual elimination of underperforming parame-
ters. Throughout the years of testing and optimizing trading systems, we have
discovered that comparing the profit to draw down ratio or the return on
account across the optimization range is the first step in the parameter selec-
tion process. So with this in mind, let’s click on the floppy disk and save our
optimization report to the C: drive. You may want to name the file MyStrate-
gyOpt. Temporarily shrink TradeStation down. The next few steps will
require spreadsheet software such as Microsoft Excel. We prefer Excel, and we
will use it in the next few illustrations.

Launch Excel and open MyStrategyOpt, or whatever you called it, from
the C: drive. TradeStation uses a delimiter to separate the fields in our opti-
mization report. When Excel asks you to choose the file type that best
describes your data, click on the Delimited radio button. Continue clicking on
the Next button until you have the file opened in a spreadsheet. You will notice
that our optimization report looks the same as it did in TradeStation. You
might even be asking, “Why did we go through this additional step?”
Microsoft Excel or any other spreadsheet program has many more capabilities
when it comes to data processing than TradeStation. As we all know, a picture
is worth a thousand words. The spreadsheet that we have before us provides an

Measuring Trading System Performance and System Optimization 99

www.fx1618.com



28
60

45
55

0
10

42
25

–5
86

75
30

36
11

19

24
56

46
72

5
10

66
00

–5
98

75
34

38
13

21

36
60

47
22

5
10

48
00

–5
75

75
26

34
9

17

40
56

48
38

7.
5

10
61

62
.5

–5
77

75
26

38
10

16

32
56

49
93

7.
5

10
83

25
–5

83
87

.5
28

35
10

18

28
56

50
20

0
10

68
87

.5
–5

66
87

.5
30

40
12

18

36
56

51
87

5
10

70
12

.5
–5

51
37

.5
26

38
10

16

24
52

56
10

0
11

26
00

–5
65

00
34

41
14

20

32
24

70
51

2.
5

13
60

62
.5

–6
55

50
37

35
13

24

40
52

57
76

2.
5

11
10

62
.5

–5
33

00
26

38
10

16

32
52

59
31

2.
5

11
33

00
–5

39
87

.5
28

39
11

17

28
24

70
77

5
13

47
87

.5
–6

40
12

.5
39

35
14

25

28
52

59
57

5
11

20
75

–5
25

00
30

43
13

17

36
24

71
95

0
13

46
25

–6
26

75
35

34
12

23

24
48

63
60

0
11

84
12

.5
–5

48
12

.5
34

41
14

20

24
24

73
57

5
13

54
25

–6
18

50
43

34
15

28

101www.fx1618.com



Ta
b

le
 5

.5
St

ra
te

gy
 O

p
tim

iz
at

io
n 

Re
p

or
t

lo
n

g
Le

n
g

th
sh

o
rt

Le
n

g
th

N
et

Pr
ft

G
ro

ss
P

G
ro

ss
L

#T
rd

s
%

Pr
ft

#W
Tr

d
s

#L
Tr

d
s

20
56

13
07

5
10

55
37

.5
–9

24
62

.5
46

32
15

31

20
60

13
77

5
10

27
12

.5
–8

89
37

.5
44

34
15

29

20
52

22
45

0
11

01
87

.5
–8

77
37

.5
46

32
15

31

20
32

29
57

5
12

38
25

–9
42

50
51

35
18

33

20
48

29
97

5
11

41
62

.5
–8

41
87

.5
46

34
16

30

20
24

35
20

0
12

99
87

.5
–9

47
87

.5
57

36
21

36

20
40

38
07

5
12

03
12

.5
–8

22
37

.5
48

37
18

30

20
28

42
35

0
13

24
00

–9
00

50
53

35
19

34

20
44

38
67

5
11

77
75

–7
91

00
46

39
18

28

20
36

43
05

0
12

13
00

–7
82

50
48

37
18

30

20
20

56
08

7.
5

14
29

00
–8

68
12

.5
60

38
23

37

24
60

42
07

5
10

34
12

.5
–6

13
37

.5
34

38
13

21

40
60

43
73

7.
5

10
39

50
–6

02
12

.5
26

34
9

17

32
60

45
28

7.
5

10
61

12
.5

–6
08

25
28

32
9

19

100www.fx1618.com



overabundance of information; our minds are not able to manipulate the infor-
mation into a readily understandable format. This is where Excel comes in
handy. We have now optimized two parameters on MyStrategy-1 and created
several different statistics on each individual run. Since we optimized only
two parameters, we will be able to create a three-dimensional contour chart of
our data. Remembering back to high school math, we know that a three-
dimensional chart requires three axes. In our graph, the longLength parame-
ters will be the x-axis, shortLength parameters will be the y-axis, and the return
on account will be the z-axis. (We could create different charts by using dif-
ferent performance statistics for our z-axis.) You may feel that the draw down
statistic is the better key in parameter selection. Before we can create our chart,
we must manipulate the data into a format that Excel can easily interpret and
the best way to do this is by creating a pivot table. A pivot table is simply a cus-
tomizable table that rearranges our data into a more readable format. If you
don’t have Excel, your spreadsheet software should be able to create a pivot
table. (We refer you to your spreadsheet user’s guide.) From within Excel, go
up under the Data menu and select PivotTable and PivotChart Report. The
PivotTable Wizard will open and ask you several questions concerning our
data. A dialog box titled PivotTable and PivotChart Wizard should open and
look similar to Figure 5.7.

102 Building Winning Trading Systems with TradeStation

Figure 5.7 PivotTable and PivotChart Wizard—Step 1 of 3

www.fx1618.com



In the top portion of the dialog box click the Microsoft Excel list or database
radio button. In the lower half of the dialog box click the PivotChart (with Pivot
Table) radio button. Go ahead and click Next. The dialog box like the one in
Figure 5.8 will open with the range of data that will be used in the creation of
our table and chart.

Upon clicking Next you will see another dialog box. It asks if we want to
put our pivot table in a new worksheet or the existing worksheet. Go ahead and
put it into a new worksheet. Now this is where it gets kind of confusing. Click
on the Layout button and a dialog box like the one in Figure 5.9 will open.

Measuring Trading System Performance and System Optimization 103

Figure 5.8 PivotTable and PivotChart Wizard—Step 2 of 3

Figure 5.9 PivotTable and PivotChart Wizard—Layout

www.fx1618.com



This dialog box will allow us to choose only the data we want in our table
and chart. In addition, we can customize the format of our table. In the right
side of the dialog box you will see all of the different statistics that TradeSta-
tion generated in our optimization report. Take a look at all of the buttons and
familiarize yourself with all of the different options. You may need to use the
scroll bar to see all of the available buttons. You will see a button labeled long-
Length. Click on it and drag it over to the area labeled ROW. Click on the
button labeled shortLength and drag it over the area labeled COLUMN. Click
on the button labeled ROA (you may need to use the scroll bar underneath our
field buttons) and drag it to the area labeled DATA. Your dialog box should
now look like Figure 5.10.

Click OK and you will be back at the previous dialog box. Click Finish. You
should see several things on your screen at this point. If everything went as
planned, your screen should look like Figure 5.11. (If your screen doesn’t look
like Figure 5.11, then start again and refer to your spreadsheet software manual.) 

We have now created a pivot table chart out of our specified data. You
may think, “Big deal!” The data still isn’t visually pleasing. That is because we
are looking at our three-dimensional data in two dimensions. Click on the
chart icon near the top of the PivotTable window. We need to tell Excel to plot
our data in three dimensions. After clicking the chart icon a dialog box like the
one in Figure 5.12 will now be on your screen.

You will notice that there are several different chart types at your dis-
posal. Click on the Surface chart selection. The surface chart has four differ-
ent subtypes. Accept the default subtype and click Finish. We could click on

104 Building Winning Trading Systems with TradeStation

Figure 5.10 PivotTable and Selected Fields

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



Figure 5.11 3-D Data Through the Eyes of a 2-D Chart

Figure 5.12 Chart Wizard

105www.fx1618.com



Next and then have the ability to give titles to our chart and axes, but to save
time, we will simply skip this step. Voila! You should now have a three-
dimensional surface or contour chart on the screen. Figure 5.13 shows the end
result of our diligent efforts.

If you are unfamiliar with these types of charts, you may be asking, “What
the heck am I looking at?” A surface chart helps to determine the optimum
combinations between two sets of data. The x and y axes are our longLengths
and our shortLengths respectively, and the z-axis is the Return on Account.
The chart looks like a mountain range; there are peaks, valleys, and plateaus.
Parameters that fall on the peaks are not considered robust, even though they
produced the best profit/draw down ratio. Also parameters that fall in valleys
are not considered robust because they did not produce acceptable profit/draw
down ratios. The most robust parameters fall on plateaus. Plateau parameters
do not require history to repeat itself exactly to produce similar historic results,
whereas peak parameters do. Let’s say the combination of 56 and 28 produced
the highest return and the highest peak on the chart. Did the parameters
around this peak have a dramatic drop off in performance? You bet they did.
This tells us that if history doesn’t repeat itself exactly, then we cannot expect
our tests to approximate future performance. From the surface chart, we feel
the combination of parameters that fall in the range of [longLength 40–48] and
[shortLength 40–48] would produce the most robust results. These parameters

106 Building Winning Trading Systems with TradeStation

Figure 5.13 3-D Contour Chart of MyStrategy-1 Optimizations

www.fx1618.com



fall on elevated and level plateaus. You may not be able to see these parameters
clearly by looking at the chart. You can change the chart view by going under
the Chart menu and selecting 3-D view. We personally like to look down
on the chart from an above perspective (an aerial view). This perspective allows
you to see all of the peaks, valleys, and plateaus.

If you optimize more than two parameters, then it is impossible to visu-
ally determine parameter robustness. If you only optimize one parameter, you
can do away with the PivotTable procedure and simply use the charting wiz-
ard in Excel. The more parameters you optimize, the higher the likelihood of
curve fitting and overoptimization. If you have your heart set on optimizing
more than two parameters, then do it in a stepwise fashion. Determine your
two most important parameters and optimize and analyze for robustness. Once
you select the most robust combination, optimize the other parameters and so
on. Just be careful and don’t fool yourself.

We all know the true test is the test of time. How a strategy performs after
it is developed gives the most insight into the true validity of the strategy. Opti-
mizing parameters over the entire history of a market does not allow for a
“walk-forward test.” A walk-forward test involves testing over data that was not
used during the back test or strategy optimization. When searching for opti-
mum parameters, we like to cut our historic database in half. The first half of the
data is dedicated to back testing and optimization. The second half of the test is

Measuring Trading System Performance and System Optimization 107

Figure 5.13 (Continued)

www.fx1618.com



reserved for forward testing our strategy and parameter selections. If the strat-
egy or the parameters do not pass the walk-forward test period, then we go back
to the drawing board. Walk-forward testing can actually be done on any out-of-
sample data. Many people prefer to develop and optimize their strategies using
recent history and then walk-forward test an earlier out-of-sample data. They
believe that the most recent price history of a market gives more insight into the
near future than does data that is several years old. We would have to agree that
stocks and stock indices data look nothing like they did five years ago, so this
may not be a bad idea for these types of markets. It doesn’t matter which back
testing/walk-forward combination you choose, as long as you choose one.

CONCLUSIONS

Understanding trading system performance and proper strategy optimization
helps to determine a good strategy from a bad one. TradeStation offers a
wealth of performance information on a particular market in the Strategy Per-
formance report to do this. Unfortunately, it gives only a microscopic view of
the robustness of our strategy. You can’t develop a trading plan by looking at
the performance of only one market; a macroscopic view is necessary before a
strategy is to be given a stamp of approval. If you plan on allocating your trad-
ing capital across a handful of markets, you will be breaking the one true
golden rule of trading: diversification. If you have any hopes of succeeding as
a trader, you must diversify your capital across as many markets as possible.
You can achieve diversifications through a portfolio of markets or trading
strategies. Unfortunately, TradeStation is limited by its inability to analyze
trading strategies at the portfolio level. Even though TradeStation is limited in
this capacity, we can somewhat overcome this obstacle. If a trading strategy can
be successful on a large and diverse portfolio of markets, then there is a good
probability that it will be successful in the future. In other words, test, test, and
retest. Throw the strategy against the wall as many times as necessary. Revel in
failure, for every time you dismiss a losing strategy, you gain a victory in the
battle for a winning trading strategy.

If a trading strategy is initially successful, we know that we can make it
better through the process of optimization. Or, we make it less likely to be suc-
cessful in the future. Optimization is a necessary evil. It is necessary so that we
can come up with sound trading strategies (back testing is a form of optimiza-
tion). At the same time, since we are human and enjoy tinkering with things,
we can’t help running 10,000 optimizations of five parameters in search of the
Holy Grail. Hopefully, this chapter has introduced the knowledge to prevent
the abuse of TradeStation and the vast database of historic data that is available
at our fingertips. Chapter 6 will introduce turnkey trading strategies that rival
any other trading strategies that can be purchased for $1000s.

108 Building Winning Trading Systems with TradeStation

www.fx1618.com



109

6

Trading Strategies That
Work (or The Big Damn

Chapter on Trading
Strategies)

Are you ready for some good trading strategy ideas and the programming
behind them? Over the past twenty years, we have seen thousands of trading
ideas, schemes, and systems. Unfortunately, most of them ended up in the
trash can. Sometimes, however, we have scratched our heads with raised eye-
brows and said, “Hmmm.” The next strategies that we present are based on
ideas that have proven successful time and time again. We present these sys-
tems as works in progress; as you will soon discover, trading system design has
no end. No matter how long and arduously you work on a trading system, you
will never be 100 percent satisfied with the results. We don’t want you to be
satisfied with the systems that we present. We want you to make them your
own. Use the programs as templates and branch off in an entirely different
direction.

The manner in which we present these trading systems will guide you
through the steps necessary to translate a trading idea into software. We first
start by describing the trading idea in general terms and our objectives. The
tools that will be used to build our trading methodology are then defined.
Pseudocode (half English and half computer speak) is then used to bridge
the gap between system description and actual code. Finally, the exact
EasyLanguage program is provided. Since testing several different markets
over an extended time period is cumbersome with TradeStation, we present
the overall and individual performance statistics of the system for you. Of
course, you can also do this with your own TradeStation by building work-
spaces and applying each system.

We have tried to incorporate all of the necessary tools of system pro-
gramming by creating rather sophisticated trading alogorithms. The complexity

www.fx1618.com



level of each system grows as each one is presented. We hope the commentary
that is included in the actual code will help clear up any confusion.

As the old saying goes, “There is more than one way to skin a cat.” In
most instances, there is more than one way to program a solution to a given
problem; be it a complex, mathematical calculation or a trading system. You
may and probably will come up with easier to understand and more efficient
programs than we have presented here. We hope you do. Programming is a
form of art, and like any other art, it is only limited by the creativity of the
artist.

110 Building Winning Trading Systems with TradeStation

www.fx1618.com



THE KING KELTNER TRADING STRATEGY

A moving average calculation is the main indicator used in the King Keltner
trading strategy. A moving average is calculated by summing up x prior data
points and then dividing the summation by x. Most times these calculations use
a fixed number of data points. The more data points you have, the less of an
impact a new data point has on the final averaged value. Longer moving aver-
age calculations try to determine longer-term trend movements. Conversely,
shorter moving averages try to pinpoint shorter-term market swings. Chester
Keltner presented this application of a moving average system in 1960. The
system Keltner presented was built around a moving average of the high, low,
and closing prices with a band or channel on each side of the market formed by
a moving average of the high-low range. A buy signal occurs when the market
penetrates the upper band and a sell signal when the market penetrates the
lower. We have used the basic Keltner approach, but have added a few bells
and whistles. We hope, as did Chester, that when the market makes an abrupt
move away from its moving average, it is signaling a change in trend. In the
King Keltner system, the penetration of the upper/lower bands signals this
trend change. We will go with the flow and buy on strength and sell on weak-
ness. We will get out with a win or a loss when the market retraces back to the
moving average.

The major problem with channel break out systems is the failed breakout.
Many times, the channels represent a point of market exhaustion instead of
trend confirmation. Frequently, a market will spend itself by moving to the
upper or lower bands and then immediately fall back and move in the opposite
direction. This is our worst fear. However, since we realize the weakness of this
type of system, we have programmed a liquidation stop at the moving average.
Most trading methodologies will fail and some form of protection should be
put into place when a trade is initiated. If most trading methodologies fail, then
why put a trade on in the first place? The success to any form of trading is to
cut losses short and let profits run. This basic tenet of trading falls under the
realm of money management. Your trading system gets you into the trade and
your money management scheme manages your position and eventually gets
you out of the trade. In the King Keltner system, the direction of the moving
average and the penetration of the bands are our entry technique, and the liq-
uidation of our position at the moving average is our money management
scheme. Our money management stop will either be a protective stop or a take
profit stop. If we do capture a long trend, then the moving average should
move in the same direction as our entry signal and with any luck capture a
good portion of the move. Always remember it is the exit technique that
determines the success of the entry technique. Since King Keltner is a long-
term approach, short-term profits are not an objective. We will take them if
they come our way, but with this type of system they would eventually become

Trading Strategies That Work 111

www.fx1618.com



counterproductive. This system will have fewer than 50 percent wins and
that’s all right. The few large trends that we do catch should more than cover
the losses from the failed breakouts.

Most moving average-based systems are very simple to program and this
one will not be an exception. We will need only two tools: (1) a moving aver-
age of the average of the high, low, and close prices, and (2) a moving average
of the true ranges. You may not be familiar with the term true range. The
range of a daily bar is simply calculated by subtracting the low price from
the high price. An average of these ranges will give an estimate of future price
ranges. The true range calculation extends the range of a bar to the previous
day’s close (true range = max(close of yesterday, high of today) – min(close of
yesterday, low of today) thus, expanding the bar’s range to include any gaps
from the previous day’s close. We feel true ranges give a slightly more accurate
measure of market volatility. Since we are trying to capture a longer-term
move, we will use 40 days in our average calculations.

King Keltner Pseudocode

movAvg = Average(((High + Low + Close)/3),40)
upBand = movAvg + Average(TrueRange,40)
dnBand = movAvg – Average(TrueRange,40)
liquidPoint = Average(((High + Low + Close)/3),40)

A long position will be initiated when today's movAvg is greater than 
yesterday's and market action >= upBand

A short position will be initiated when today's movAvg is less than 
yesterday's and market action <= dnBand

A long position will be liquidated when today's market action 
<= liquidPoint

A short position will be liquidated when today's market action 
>= liquidPoint

King Keltner Program

{King Keltner by George Pruitt—based on trading system presented by Chester
Keltner}
Inputs: avgLength(40), atrLength(40);
Vars: upBand(0),dnBand(0),liquidPoint(0),movAvgVal(0);
movAvgVal = Average((High + Low + Close),avgLength);
upBand = movAvgVal + AvgTrueRange(atrLength);
dnBand = movAvgVal – AvgTrueRange(atrLength);
if(movAvgVal > movAvgVal[1]) then Buy ("KKBuy") tomorrow at upBand stop;
if(movAvgVal < movAvgVal[1]) then Sell Short("KKSell") tomorrow at dnBand 

stop;
liquidPoint = movAvgVal;

112 Building Winning Trading Systems with TradeStation

www.fx1618.com



If(MarketPosition = 1) then Sell tomorrow at liquidPoint stop;
If(MarketPosition = –1) then Buy To Cover tomorrow at liquidPoint stop;

The King Keltner program demonstrates how to:

• Invoke the Average and Average True Range functions.
• Buy/Sell on the next bar at a stop level.
• Liquidate a position on the next bar at a stop level.
• Incorporate inputs for user interface and future optimizations.

King Keltner trading performance is summarized in Table 6.1
A visual example of how this system enters and exits trades is shown in

Figure 6.1.

Trading Strategies That Work 113

Table 6.1
King Keltner Performance

System Name: King Keltner Commission/Slippage = $75
Tested 1982 – 3/19/2002

Total Net Max. # of Max. Cons.
Markets Profit DrawDown Trades % Wins Losers

British Pound $ 48,056.25 $ (51,962.50) 239 30.13% 25

Crude Oil $ 36,152.50 $ (17,682.50) 184 32.07% 16

Corn $ (612.50) $ (10,681.25) 251 22.71% 14

Copper $ 5,180.00 $ (12,182.50) 149 33.56% 10

Cotton $ 30,387.50 $ (26,997.50) 241 24.48% 15

Deutsch Mark $ 57,962.50 $ (11,575.00) 208 33.17% 10

Euro Currency $ 2,612.50 $ (9,425.00) 36 38.89% 5

Euro Dollar $ 37,392.50 $ (6,130.00) 204 30.88% 21

Heating Oil $ 10,673.68 $ (25,697.71) 240 27.50% 12

Japanese Yen $ 114,175.00 $ (30,162.50) 215 31.16% 12

Live Cattle $ (3,036.50) $ (21,925.50) 243 24.28% 24

Natural Gas $ 100,577.50 $ (14,157.50) 119 37.82% 7

Soybeans $ (15,193.75) $ (34,818.75) 251 27.49% 15

Swiss Franc $ 56,962.50 $ (14,837.50) 220 32.27% 8

Treasury Note $ 61,850.00 $ (11,053.13) 209 33.01% 10

U.S. Bonds $ 66,275.00 $ (15,543.75) 215 28.84% 9

Wheat $ (16,112.50) $ (19,906.25) 254 22.83% 14

Total $ 593,302.18 3478

www.fx1618.com



King Keltner Summary

Overall trading performance was extremely positive. The system did well in
the majority of the test markets, which is a testament to its robustness.
Remember there are only two parameters, which are the same for all markets.
Could this system be improved by optimizing the parameters on an individual
market basis? We like the idea of the same parameter set, but others in the
industry would argue this point with us. Their argument would be based on
the belief that markets from different sectors (e.g., Japanese Yen and live cat-
tle) have different underlying fundamentals and, therefore, do not demonstrate
similar market movements. Changing a parameter to reflect the differences
between different markets is not just acceptable but it is an absolute necessity.
We don’t totally agree with this argument, but we could be talked into differ-
ent parameters for different sectors. All of the currencies would have one set of
parameters, and all of the meats would have one and so on. We would emphat-
ically disagree with the idea of having a different parameter for the Japanese
Yen and the Swiss Franc; these two markets have similar fundamentals and
market movements. King Keltner could be the foundation for an entire
portfolio-based trading platform. All that is needed is an algorithm for bet size
(the number of contracts that is put on with each trade). In other words, you
would need a money management overlay.

114 Building Winning Trading Systems with TradeStation

Figure 6.1 King Keltner Trades

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



THE BOLLINGER BANDIT TRADING STRATEGY

Standard deviation is a number that indicates how much on average each of the
values in the distribution deviates from the mean (or center) of the distribution.
Bollinger Bands, created by John Bollinger in the 1960s, is an indicator that uses
this statistical measure to determine support and resistance levels. This indica-
tor consists of three lines and is very simple to derive; the middle line is a sim-
ple moving average of the underlying price data and the two outside bands are
equal to the moving average plus or minus one standard deviation. Based on
theory, two standard deviations equates to a 95 percent confidence level. In
other words, 95 percent of the time the values used in our sampling fell within
two standard deviations of the average. Initially, Bollinger Bands were used to
determine the boundaries of market movements. If a market moved to the
upper band or lower band, then there was a good chance that the market would
move back to its average. We have carried out numerous tests on this hypothe-
sis and seemed to always come back with failure. Instead of using the upper
band as a resistance point, we discovered, as others have, that it worked much
better as a breakout indicator. The same goes for the lower band. The Bollinger
Bandit uses one standard deviation above the 50-day moving average as a poten-
tial long entry and one standard deviation below the 50-day moving average as
a potential short entry. This system is a first cousin of King Keltner. They are
similar in that they are longer-term channel breakout systems. However, this is
where the similarities end. Instead of simply liquidating a position when the
market moved back to the moving average, we concocted a little twist to this exit
technique. From observing the trades on the King Keltner, we discovered that
we gave back a good portion of the larger profits waiting to exit the market at
the moving average. So, for the Bollinger Bandit, we incorporated a more
aggressive trailing stop mechanism. When a position is initiated, the protec-
tive stop is set at the 50-day moving average. Every day that we are in a position,
we decrement the number of days for our moving average calculation by one.
The longer that we are in a trade, the easier it is to exit the market with a profit.
We keep decrementing the number of days in our moving average calculation
until we reach ten. From that point on, we do not decrement. There is one
more element to our exit technique: the moving average must be below the
upper band if we are long and above the lower band if we are short. We added
this element to prevent the system from going back into the same trade that we
just liquidated. If we hadn’t used this additional condition and we were long and
the moving average was above the upper band, the long entry criteria would still
be set up and a long trade would be initiated.

Previously, we stated that the upper band and lower band were potential
buy/sell entries. Potential is the key word. One more test must be passed
before we initiate a position; the close of today must be greater than the close
of 30 days ago for a long position and the close of today must be less than the

Trading Strategies That Work 115

www.fx1618.com



close of 30 days ago for a short position. This additional requirement is a trend
filter. We only want to go long in an uptrend and short in a downtrend.

The Bollinger Bandit requires four tools: (1) Bollinger Bands, (2) a mov-
ing average of closing prices, (3) a rate of change calculation, and (4) a counter.
This system is longer term in nature, so we will use 50 days in our calculations.

Bollinger Bandit Pseudocode

LiqDay is initially set to 50
upBand = Average(Close,50) + StdDev(Close,50) *1.25
dnBand = Average(Close,50) - StdDev(Close,50) *1.25
rocCalc = Close of today - Close of thirty days ago

Set liqLength to 50
If rocCalc is positive, a long position will be initiated when 

today's market action >= upBand
If rocCalc is negative, a short position will be initiated when 

today's market action <= dnBand
liqPoint = Average(Close, 50)
If liqPoint is above the upBand, we will liquidate a long position if 

today's market action <= liqPoint
If liqPoint is below the dnBand, we will liquidate a short position 

if today's market action >= liqPoint
If we are not stopped out today, then liqLength = liqLength - 1
If we are stopped out today, then reset liqLength to fifty

Bollinger Bandit Program

{Bollinger Bandit by George Pruitt—program uses Bollinger Bands and Rate of
change to determine entry points. A trailing stop that is proportional with
the amount of time a trade is on is used as the exit technique.}

Inputs: bollingerLengths(50),liqLength(50),rocCalcLength(30);
Vars: upBand(0),dnBand(0),liqDays(50),rocCalc(0);
upBand = BollingerBand(Close,bollingerLengths,1.25);
dnBand = BollingerBand(Close,bollingerLengths,-1.25);

rocCalc = Close - Close[rocCalcLength-1]; {remember to subtract 1}
if(MarketPosition <> 1 and rocCalc > 0) then Buy("BanditBuy")tomorrow upBand 

stop;
if(MarketPosition <>-1 and rocCalc < 0) then SellShort("BanditSell") tomorrow 

dnBand stop;

if(MarketPosition = 0) then liqDays = liqLength;
if(MarketPosition <> 0) then
begin

liqDays = liqDays - 1;
liqDays = MaxList(liqDays,10);

116 Building Winning Trading Systems with TradeStation

www.fx1618.com



end;
if(MarketPosition = 1 and Average(Close,liqDays) < upBand) then

Sell("Long Liq") tomorrow Average(Close,liqDays) stop;
if(MarketPosition = -1 and Average(Close,liqDays) > dnBand) then

BuyToCover("Short Liq") tomorrow Average(Close,liqDays) stop;

The Bollinger Bandit program demonstrates how to:

• Invoke the Bollinger Band function. This function call is less than intu-
itive and must be passed three parameters: (1) price series, (2) number
of elements in the sample used in the calculation for the standard devi-
ation, and (3) number of deviations above/below moving average. You
must use a negative sign in the last parameter to get the band to fall
under the moving average.

• Invoke the MaxList function. This function returns the largest value in
a list.

• Do a simple rate of change calculation.
• Create and manage a counter variable, liqLength.

Bollinger Bandit trading performance is summarized in Table 6.2.

Trading Strategies That Work 117

Table 6.2
Bollinger Bandit Performance

System Name: Bollinger Bandit Commission/Slippage = $75
Tested 1982 – 3/19/2002

Total Net Max. # of Max. Cons.
Markets Profit DrawDown Trades % Wins Losers

British Pound $ 38,750.00 $ (43,612.50) 194 33.51% 20
Crude Oil $ 47,242.50 $ (17,522.50) 170 41.76% 8
Corn $ (5,112.50) $ (12,937.50) 213 29.58% 13
Copper $ 2,300.00 $ (9,587.50) 138 36.23% 12
Cotton $ 26,695.00 $ (12,437.50) 220 32.73% 8
Deutsch Mark $ 51,075.00 $ (13,812.50) 186 41.40% 6
Euro Currency $ 8,737.50 $ (9,012.50) 29 44.83% 7
Euro Dollar $ 31,927.50 $ (6,622.50) 196 35.71% 19
Heating Oil $ 16,883.14 $ (18,378.89) 201 38.81% 10
Japanese Yen $ 121,937.50 $ (21,462.50) 180 37.22% 8
Live Cattle $ (16,867.50) $ (25,411.50) 224 26.79% 18
Natural Gas $ 85,897.50 $ (21,737.50) 113 44.25% 6
Soybeans $ (15,925.00) $ (40,862.50) 215 31.16% 15
Swiss Franc $ 76,312.50 $ (9,987.50) 188 40.96% 5
Treasury Note $ 39,625.00 $ (11,487.50) 202 38.12% 9
U.S. Bonds $ 48,381.25 $ (15,343.75) 204 36.27% 6
Wheat $ (20,037.50) $ (21,931.25) 219 29.68% 11
Total $ 537,821.89 3092

www.fx1618.com



A visual example of how this system enters and exits trades is shown in
Figure 6.2.

Bollinger Bandit Summary

Overall trading performance was positive. You can see the similarities between
the Bollinger and Keltner-based systems. The same markets that made good
money in one system made good money in the other. These systems would not
work well together due to their high level of correlation. This system did
exceptionally well in the Japanese Yen and Natural Gas. Through further
investigation, we discovered that our trailing stop mechanism only marginally
increased profit and decreased draw down. Nonetheless, the concept probably
adds a higher comfort level when a trade is initiated. We know that our risk
should diminish the farther we get into a trade. This is due to the fact that a
shorter-term moving average follows closer to the actual market than a longer-
term average.

118 Building Winning Trading Systems with TradeStation

Figure 6.2 Bollinger Bandit Trades

www.fx1618.com



THE THERMOSTAT TRADING STRATEGY

We actually traded a strategy very similar to Thermostat. We named this sys-
tem based on its ability to switch gears and trade in the two modes of the mar-
ket, congestion and trend. This system sprung from our observations on the
success of particular systems on particular market sectors. We thought that one
system that also possessed a dual nature could be created to capitalize on
the market’s two modes. We created a function to help determine the market’s
mode. Based on the output of this function, the Thermostat switches from a
trend-following mode to a short-term swing mode.

The trend-following mode uses a trend following mechanism similar to the
one found in the Bollinger Bandit. The short-term swing system is an open
range breakout that incorporates pattern recognition. The function that causes
the system to switch its approach is the same function that we described in Chap-
ter 4, the ChoppyMarketIndex. If you have forgotten this function, here is a brief
review. This function compares the distance the market wanders and the actual
distance the market traveled (Abs(Close – Close[29])/(Highest(High,30) –
Lowest(Low,30))*100). The function generates values from 0 to 100. The
larger the value, the less congested the current market is.

If the ChoppyMarketIndex function returns a value of less than 20, then
the system goes into the short-term swing mode. Basically, the market is
demonstrating a swinging motion and the system tries to catch the swings and
pull out a small profit. Thermostat tries to accomplish this feat by buying/sell-
ing on small market impulses. If the impulse is large enough, then the system
jumps on and tries to ride the market out for the next few days. Through in-
depth analysis of short-term swings, we have discovered that there exist certain
days when it is better to buy than sell and vice versa. These days can be deter-
mined by a simple visual pattern. If today’s closing price is greater than the
average of yesterday’s high, low, and close (also known as the key of the day),
then we feel tomorrow’s market action will probably be bearish. However, if
today’s closing price is less than the average of yesterday’s high, low, and close,
then today’s market will probably behave in a bullish manner. We classify these
days as sell easier and buy easier days, respectively. We know that we can’t pre-
dict the market, and this is the reason we use the term, easier. Even though
today may be a buy easier day, we can still sell and vice versa. We just make it
easier to buy on buy easier days and sell on sell easier days. A position is trig-
gered when the market moves a certain range from the open price.

If today is a buy easier day then:

Initiate a long position at the open price + 50% of the ten-day average true 
range.

Initiate a short position at the open price – 100% of the ten-day average 
true range.

Trading Strategies That Work 119

www.fx1618.com



If today is a sell easier day then:

Initiate a short position at the open price – 50% of the ten-day average true 
range.

Initiate a long position at the open price + 100% of the ten-day average true 
range.

Sometimes the market will have a false impulse in the opposite direction of the
short-term swing. These types of impulses can whipsaw you in and out of the
market and only make money for your broker. We try to prevent this by com-
paring our calculated buy stop with the three-day moving average of the low
prices. If our calculated buy stop is less than the three-day moving average, we
then move the buy stop up to the average calculation. If our sell stop is greater
than the three-day moving average of the high prices, we then move a sell stop
down to the three-day average. The system is in the market 100 percent of the
time, when we are in choppy mode. Our short-term strategy of Thermostat is:
If we have a move, we will be ready for it. It seems rather complicated, but once
we get it programmed we can forget about the complexity.

If the ChoppyMarketIndex function returns a value greater than or equal
to 20, then the system goes into the long-term trend-following mode. Our
function has basically informed us that the market is moving in a general direc-
tion, without a bunch of noise. One of the best trend following approaches that
we have seen is the same approach that we used in the Bollinger Bandit. A long
position is initiated when the market breaks through the upper Bollinger Band
and initiates a short position when the market breaks through the lower
Bollinger Band. In the case of the trend-following component of Thermostat,
we used two standard deviations in our calculation, instead of the 1.25 we used
in the Bollinger Bandit. If we have a long position, then we liquidate if the
price moves back to the moving average and vice versa. We use the same 50-
day moving average as we did before.

Many times, you will have a position on when the market switches modes.
If we switch from trending to congestion, we simply use the short-term entry
method to get out of our trend mode position. However, if the market switches
from congestion to trending and we have a position on, we then use a three-
average true-range protective stop. This type of stop is utilized because the 50-
day moving average exit that we used in trend mode is not congruent with our
short-term entry technique. When designing trading systems, your entry and
exit techniques must have similar time horizons. You wouldn’t use two-day low
trailing stop on a long position that was initiated by the crossing of a 75-day
moving average. If we are long, we calculate the average true range for the past
ten days and multiply this calculation by three and subtract the result from our
entry price. If we are short, we again calculate the average true range for the
past ten days and multiply this calculation by three but then add the result to

120 Building Winning Trading Systems with TradeStation

www.fx1618.com



our entry price. Once we exit the positions that were initiated in choppy mode,
we begin using the trend-following system to initiate any new signals.

Thermostat Pseudocode

Determine current market mode by using the ChoppyMarketIndex function.
If the ChoppyMarketIndex function returns a value of less than 20, then use
the short-term swing approach.

atr10 = AverageTrueRange(10)
keyOfDay = (High + Low + Close)/3
buyEasierDay = 0
sellEasierDay = 0
if(Close > keyOfDay) then sellEasierDay = 1
if(Close<=keyOfDay) then buyEasierDay = 1
avg3Hi = Average(High,3)
avg3Lo = Average(Low,3)
if(buyEasierDay = 1) then

longEntryPoint = Open + atr10 * 0.5
shortEntryPoint = Open - atr10 * 0.75

if(sellEasierDay = 1) then
longEntryPoint = Open + atr10 * 0.75
shortEntryPoint = Open - atr10 * 0.5

longEntryPoint = MaxList(longEntryPoint,avg3Lo)
shortEntryPoint = MinList(shortEntryPoint,avg3Hi)
Initiate a long position of today's market action >= longEntryPoint
Initiate a short position of today's market action <= shortEntryPoint

If the ChoppyMarketIndex function returns a value greater than or equal to 20,
then use the long-term trend following approach.

If you have a short position that was initiated by the short-term swing
approach then

shortLiqPoint = entryPrice + 3 * atr10
Liquidate short position if today's market action 

>= shortLiqPoint

If you have a long position that was initiated by the short-term swing approach
then

longLiqPoint = entryPrice - 3 * atr10
Liquidate long position if today's market action 

<= longLiqPoint
upBand = Average(Close,50) + StdDev(Close,50) * 2.00
dnBand = Average(Close,50) - StdDev(Close,50) * 2.00
avg50 = Average(Close,50)
Initiate a long position if today's market action >= upBand

Trading Strategies That Work 121

www.fx1618.com



Initiate a short position if today's market action <= dnBand
Liquidate long position if today's market action <= avg50
Liquidate short position if today's market action >= avg50

Thermostat Program

{Thermostat by George Pruitt
Two systems in one. If the ChoppyMarketIndex is less than 20 then we are in a
swing mode. If it is greater than or equal to 20 then we are in a trend mode.
Swing system is an open range breakout incorporating a buy easier/sell easier
concept. The trend following system is based on bollinger bands and is
similar to the Bollinger Bandit program.}

Inputs: bollingerLengths(50),trendLiqLength(50),numStdDevs(2),
swingPrcnt1(0.50),swingPrcnt2(0.75),atrLength(10),
swingTrendSwitch(20);
Vars:cmiVal(0),buyEasierDay(0),sellEasierDay(0),trendLokBuy(0),
trendLokSell(0),keyOfDay(0),swingBuyPt(0),swingSellPt(0),
trendBuyPt(0),trendSellPt(0),swingProtStop(0);

cmiVal = ChoppyMarketIndex(30); 
buyEasierDay = 0;
sellEasierDay = 0;

trendLokBuy = Average(Low,3);
trendLokSell= Average(High,3);

keyOfDay = (High + Low + Close)/3;
if(Close > keyOfDay) then sellEasierDay = 1;
if(Close <= keyOfDay) then buyEasierDay = 1;

if(buyEasierDay = 1) then
begin

swingBuyPt = Open of tomorrow + swingPrcnt1*AvgTrueRange(atrLength);
swingSellPt = Open of tomorrow - swingPrcnt2*AvgTrueRange(atrLength);

end;
if(sellEasierDay = 1) then
begin

swingBuyPt = Open of tomorrow + swingPrcnt2*AvgTrueRange(atrLength);
swingSellPt = Open of tomorrow - swingPrcnt1*AvgTrueRange(atrLength);

end;

swingBuyPt = MaxList(swingBuyPt,trendLokBuy);
swingSellPt = MinList(swingSellPt,trendLokSell);

trendBuyPt = BollingerBand(Close,bollingerLengths,numStdDevs);
trendSellPt = BollingerBand(Close,bollingerLengths,- numStdDevs);

122 Building Winning Trading Systems with TradeStation

www.fx1618.com



if(cmiVal < swingTrendSwitch)then
begin

if (MarketPosition <> 1) then Buy("SwingBuy") next bar at swingBuyPt 
stop;

if(MarketPosition <> -1) then SellShort("SwingSell") next bar at 
swingSellPt stop;

end
else
begin

swingProtStop = 3*AvgTrueRange(atrLength);
Buy("TrendBuy") next bar at trendBuyPt stop;
SellShort("TrendSell") next bar at trendSellPt stop;
Sell from Entry("TrendBuy") next bar at Average(Close,trendLiqLength) 

stop;
BuyToCover from Entry("TrendSell") next bar at 

Average(Close,trendLiqLength) stop;
Sell from Entry("SwingBuy") next bar at EntryPrice - swingProtStop 

stop;
BuyToCover from Entry("SwingSell") next bar at EntryPrice + 

swingProtStop stop;
end;

The Thermostat program demonstrates how to:

• Invoke the ChoppyMarketIndex function. This function simply needs
the number of bars in the calculation to be passed to it.

• Properly use an if-then-else control structure.
• Tie an exit strategy to a specific entry strategy using the from entry

keywords.
• Calculate the key of the day. Also known as the day trader’s pivot point.
• Use the next day’s opening price in the calculation of our buy/sell

orders.

Thermostat trading performance is summarized in Table 6.3.
A visual example of how this system enters and exits trades is shown in

Figure 6.3.

Thermostat Summary

This program performed admirably in most of the markets. The synthesis of
the two different approaches seemed like the way to go in the interest-bearing
markets, Treasury bonds, and Treasury notes. Again, we were able to demon-
strate an approach with one set of parameters for all markets. If there is only
one thing you take away with you from this book, it should be the knowledge

Trading Strategies That Work 123

www.fx1618.com



that market principles are generally universal. Thermostat falls in the category
of intermediate term trend follower; it generates around 15 to 20 trades per
year. Due to its ability to trade a shorter time horizon, Thermostat would
probably be a good candidate to trade in concert with a longer-term approach.
If you look at the trade-by-trade analysis, you probably won’t see many trades
labeled as TrendBuy or TrendSell. This may lead you to believe that the sys-
tem was mostly in the choppy trading mode. You would be wrong. In fact, the
system was considerably more in the trending mode (as defined as a Choppy-
MarketIndex reading above 20). Many times after a trade is initiated in the
choppy or swing mode, the overall market mode switches to trending and stays
in that mode for an extended period of time. If the market changes mode and
doesn’t trend in the direction of the trade, it eventually is stopped out. If the
market does trend in the direction of the trade, then the position is held until

124 Building Winning Trading Systems with TradeStation

Table 6.3
Thermostat Performance

System Name: Thermostat Commission/Slippage = $75
Tested 1982–3/19/2002

Total Net Max. # of Max. Cons.
Markets Profit DrawDown Trades % Wins Losers

British Pound $ 24,518.75 $ (59,500.00) 260 35.00% 14

Crude Oil $ 37,172.50 $ (15,927.50) 242 34.71% 10

Corn $ 15,987.50 $ (5,900.00) 243 37.04% 9

Copper $ (6,087.50) $ (18,325.00) 205 31.71% 9

Cotton $ 2,490.00 $ (22,707.50) 311 32.48% 11

Deutsch Mark $ 60,362.50 $ (20,200.00) 226 34.96% 8

Euro Currency $ 24,687.50 $ (12,600.00) 33 54.55% 5

Euro Dollar $ 37,255.00 $ (9,320.00) 235 33.62% 14

Heating Oil $ 13,448.13 $ (34,497.29) 279 32.62% 15

Japanese Yen $ 121,250.00 $ (23,400.00) 189 36.51% 7

Live Cattle $ 3,572.50 $ (23,887.50) 290 32.76% 15

Natural Gas $ 83,272.50 $ (18,272.50) 152 36.84% 7

Soybeans $ 35,331.25 $ (61,325.00) 319 28.84% 15

Swiss Franc $ 124,887.50 $ (13,250.00) 206 44.66% 7

Treasury Note $ 101,075.00 $ (11,621.88) 231 40.26% 11

U.S. Bonds $ 103,081.25 $ (13,562.50) 268 41.79% 9

Wheat $ (21,231.25) $ (23,218.75) 331 28.10% 14

Total $ 761,073.13 4020

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



the market either ends the trend or changes mode. Either way, the trade actu-
ally turns out to be a trend trade instead of a choppy or swing trade. If there is
a large profit, then the Swing Buy/Sell gets the credit. In other words, the sys-
tem performance is generated by both systems, even though it doesn’t look
like it.

Trading Strategies That Work 125

Figure 6.3 Thermostat Trades

www.fx1618.com



THE DYNAMIC BREAK OUT II STRATEGY

George Pruitt for Futures Magazine designed the original Dynamic Break Out
system in 1996. This version has done well since it was released for public con-
sumption in 1996. This version will be included in Appendix B. The newer
version of the Dynamic Break Out is just like the original, except we have
incorporated an additional adaptive filter.

The key to the Dynamic Break Out II system is its ability to adapt its
parameters to current market conditions. This system is based on the tried-
and-tested Donchian channel system. Remember how the Donchian system
works; buy when the high of the day penetrates the highest high price of x bars
back, and sell when the low of the day penetrates the lowest low of x bars back.
If you optimize the number of bars to determine your best entry and exit lev-
els, you will discover that different markets work better with different parame-
ters. You will also discover that a particular market goes through different
cycles and works better with different parameters through time. For example,
the Japanese Yen may have performed better with a look back of 40 days in the
1980s, but now works better with a look back of 20 days. That is the major
problem with using a static parameter for all markets. The Dynamic Break Out
II system allows the number of look back days to change with the current mar-
ket. Instead of using a static parameter, this system changes the parameters
based on an aspect of the current market.

Before you can use an adaptive parameter, you must come up with a func-
tion or adaptive engine that automatically changes the value of the once static
parameter. The input of this adaptive engine should be some form of market
statistic. In the case of the Dynamic Break Out II, we used market volatility.
When market volatility expands, so does the number of look back days in
our break out calculation. Increased market volatility usually equates to mar-
ket indecisiveness. By increasing the number of look back days when market
volatility increases, we make it more difficult for the system to initiate a trade.
When market volatility decreases, we reduce the number of look back days.
Low market volatility equates to a trending market. By decreasing the number
of look back days, we encourage the system to initiate a trade. This helps the
Dynamic Break Out II to lock into long-term profits and be on the look out
for a change in the long-term trend. We used market volatility to fuel our
adaptive engine, but you could use any market characteristic. We can visualize
an engine that uses a market’s overbought/oversold state. If we had a long
position in a market, and it became overbought, we could use an overbought/
oversold indicator to adapt the parameter that determines the sell point.

Once an adaptive engine is dreamed up and it is pumping out values, you
must maintain the values in an acceptable range. The Dynamic Break Out II
system will not let the look back days go above 60 or below 20. Through opti-
mization, we discovered that look back lengths that fell beyond these bound-

126 Building Winning Trading Systems with TradeStation

www.fx1618.com



aries did not generate acceptable expectations. An adaptive engine that gener-
ates useless values is useless in itself.

The Dynamic Break Out II initially looks back 20 days to determine its
buy and sell levels. So when you start trading this system, your first buy point
is the highest high of the past 20 days and your sell point is the lowest low of
the past 20 days. At the end of each day, you measure the current market
volatility by calculating the standard deviation of the past 30 day’s closing
prices. Market volatility can be measured using different calculations: average
range, average true range, standard deviation of change in closing prices, and
others. Once we determine today’s market volatility, we compare it with yes-
terday’s. If the volatility increases, then the number of look back days also
increases. We change the number of look back days to the exact amount of the
change in market volatility; if volatility increases by ten percent, then so does
the number of look back days and vice versa.

The original Dynamic Break Out made its buying and selling decisions
solely based on the highest high and lowest low values that were generated by
our volatility-based adaptive engine. Once a position was initiated, a simple,
yet effective, $1500 money management stop was put into place. The newer
version uses the same entry technique in concert with an adaptive Bollinger
Band. The length of the Bollinger Band calculation is the same number of look
back days that is generated by the adaptive engine. The close of yesterday must
be above the upper band and today’s high must be greater than or equal to the
highest high of x bars back before a long position can be initiated (x bars back
is equal to our adaptive look back days value). Yesterday’s close must be below
the lower band and today’s low must be less than or equal to the lowest low of
x bars back before a short position can be taken. Instead of the simple money
management stop, we incorporated a dynamic trailing stop. As we have dis-
cussed, the number of look back days changes on a daily basis. The adaptive
engine decides the amount of change. The liquidation point of an existing
trade is determined by calculating a simple moving average of closing prices for
the past look back days. The sell liquidation would be just the opposite of the
buy liquidation.

Dynamic Break Out II Pseudocode

If BarNumber = 1 then lookBackDays = 20
Else do the following

Today's market volatility = StdDev(Close,30)
Yesterday's market volatility = StdDev(Close[1],30)
deltaVolatility = (today's volatility - yesterday's 

volatility)/today's volatility
lookBackDays = (1 + deltaVolatility) * lookBackDays
lookBackDays = MinList(lookBackDays,60)
lookBackDays = MaxList(lookBackDays,20)

Trading Strategies That Work 127

www.fx1618.com



upBand = Average(Close,lookBackDays) + StdDev(Close,lookBackDays) *2.00
dnBand = Average(Close,lookBackDays) - StdDev(Close,lookBackDays) *2.00
buyPoint = Highest(High,lookBackDays)
sellPoint = Lowest(Low,lookBackDays)
longLiqPoint = Average(Close,lookBackDays)
shortLiqPoint = Average(Close,lookBackDays)
If Close of yesterday > upBand) then initiate a long position if today's 

market action >= buyPoint
If (Close of yesterday < dnBand) then initiate a short position if today's 

market action <= sellPoint
Liquidate long position if today's market action <= longLiqPoint
Liquidate short position if today's market action >= shortLiqPoint

Dynamic Break Out II Program

{Dynamic Break Out II by George Pruitt
This system is an extension of the original Dynamic Break Out system written
by George for Futures Magazine in 1996. In addition to the channel break out
methodology, DBS II incorporates Bollinger Bands to determine trade entry.}

Inputs: ceilingAmt(60),floorAmt(20),bolBandTrig(2.00);
Vars: lookBackDays(20),todayVolatility(0),yesterDayVolatility(0),

deltaVolatility(0);
Vars: buyPoint(0),sellPoint(0),longLiqPoint(0),shortLiqPoint(0),upBand(0),

dnBand(0);

todayVolatility = StandardDev(Close,30,1);
yesterDayVolatility = StandardDev(Close[1],30,1); {See how I offset the

function call to get
yesterday's value}

deltaVolatility = (todayVolatility - yesterDayVolatility)/todayVolatility;
lookBackDays = lookBackDays * (1 + deltaVolatility);
lookBackDays = Round(lookBackDays,0); 
lookBackDays = MinList(lookBackDays,ceilingAmt); {Keep adaptive engine within

bounds}
lookBackDays = MaxList(lookBackDays,floorAmt); 
upBand = BollingerBand(Close,lookBackDays,+bolBandTrig);
dnBand = BollingerBand(Close,lookBackDays,-bolBandTrig);

buyPoint = Highest(High,lookBackDays);
sellPoint = Lowest(Low,lookBackDays);

longLiqPoint = Average(Close,lookBackDays); 
shortLiqPoint = Average(Close,lookBackDays);

if(Close > upBand) then Buy("DBS-2 Buy") tomorrow at buyPoint stop;
if(Close < dnBand) then SellShort("DBS-2 Sell") tomorrow at sellPoint stop;

128 Building Winning Trading Systems with TradeStation

www.fx1618.com



if(MarketPosition = 1) then Sell("LongLiq") tomorrow at longLiqPoint stop;
if(MarketPosition = -1) then BuyToCover("ShortLiq") tomorrow at shortLiqPoint 

stop;

The Dynamic Break Out II program demonstrates how to:

• Measure market volatility by using the standard deviation of closing
prices.

• Create a dynamic parameter using an adaptive engine

Dynamic Break Out II trading performance is summarized in Table 6.4.
A visual example of how this system enters and exits trades is shown in

Figure 6.4.

Trading Strategies That Work 129

Table 6.4
Dynamic Break Out II Performance

System Name: Dynamic Breakout Commission/Slippage = $75
Tested 1982–3/19/2002

Total Net Max. # of Max. Cons.
Markets Profit DrawDown Trades % Wins Losers

British Pound $ 38,750.00 $ (43,612.50) 194 33.51% 20

Crude Oil $ 21,237.50 $ (15,312.50) 109 35.78% 10

Corn $ 3,050.00 $ (7,887.50) 120 34.17% 13

Copper $ (25,175.00) $ (25,862.50) 86 30.23% 7

Cotton $ 25,555.00 $ (12,427.50) 112 33.93% 7

Deutsch Mark $ 49,087.50 $ (7,837.50) 103 46.60% 5

Euro Currency $ (7,062.50) $ (10,950.00) 14 28.57% 4

Euro Dollar $ 16,885.00 $ (5,025.00) 110 38.18% 8

Heating Oil $ 30,728.10 $ (12,443.09) 113 39.82% 13

Japanese Yen $ 118,200.00 $ (10,087.50) 98 51.02% 4

Live Cattle $ (17,396.50) $ (21,119.50) 125 25.60% 12

Natural Gas $ 51,557.50 $ (14,902.50) 65 40.00% 7

Soybeans $ (9,681.25) $ (28,237.50) 128 33.59% 10

Swiss Franc $ 57,337.50 $ (13,850.00) 106 47.17% 4

Treasury Note $ 47,168.75 $ (6,646.88) 106 36.79% 7

U.S. Bonds $ 67,093.75 $ (16,006.25) 107 40.19% 6

Wheat $ (14,831.25) $ (17,256.25) 124 31.45% 9

Total $ 452,504.10 1820

www.fx1618.com



Dynamic Break Out II Summary

Yet again, another successful long-term trading approach. We guess we let the
cat out of the bag . . .and what an ugly cat it is. The majority of successful trad-
ing systems are of the long-term trend following variety. Almost all traders
realize this fact, but it doesn’t stop them from searching out a shorter-term
approach. See, the trend-following systems require diversification, which
requires hefty capitalization. Also, trend-following systems can have substantial
draw downs and go for years without making any money. The typical trader
cannot persevere through these bad attributes, even though they know they
will probably be rewarded in the long run.

Even this dynamic approach couldn’t capture a profit in the soybean mar-
ket. The continual failure of trend-following systems in the grain markets begs
the question, “Why don’t these systems work in the soybean or grain mar-
kets?” These markets move in a cyclical fashion due to the seasonality aspect of
their underlying fundamentals. If we know ahead of time that these markets
have this cyclical nature, then why can’t we capture their movements? Cycles
are very difficult to calculate and determine and, therefore, are usually over-
looked. The two most predominant methods for finding cycles are trigono-
metric curve fitting and Fourier (spectral) analysis. The mathematics behind
these two methods is relatively complex and detailed. We personally have

130 Building Winning Trading Systems with TradeStation

Figure 6.4 Dynamic Break Out II Trades

www.fx1618.com



never seen a pure mathematically-based, cycle-finding trading system outper-
form the typical trend follower. If you do have any interest in this area, we refer
you to John Ehlers, Rocket Science for Traders (John Wiley, 2001).

Before we move on, let’s use our TradeStation for two different experi-
ments. The first experiment will deal with the Dynamic Break Out II system
and the soybean market. We saw how virtually useless the system was for cap-
turing the trends in the soybean market. What would happen if we faded the
trade signals? What we mean by fade is to do just the opposite. So, instead of
buying at our long entry point, we will sell and vice versa. If the soybean mar-
ket moves in cycles, which is countertrend, then we should be able to improve
our performance by entering against the prevalent trend. Table 6.5 shows
the performance of our countertrend soybean system.

No question that it did better, but overall it is still nothing to write home
about. This somewhat proves that soybeans and other grain markets cannot be
successfully traded by a longer-term trend-following approach. Since we are on
the subject of cycles and seasonality, why don’t we program a strategy that
incorporates a seasonality filter? We will demonstrate how to use the keyword
date to determine the current month and day. This system will trade the soy-
beans and will only take long signals from March 1 to July 1 and will only take

Trading Strategies That Work 131

Table 6.5
Soybean Counter Trend Using Dynamic Break Out II

TradeStation Strategy Performance Report—DBSII Fade @S-Daily (6/17/82–4/11/02)

Performance Summary: All Trades

Total Net Profit (1,681.25) Open position P/L 0.00

Gross Profit 67,031.25 Gross Loss (68,712.50)

Total # of trades 128 Percent profitable 64.06%

Number winning trades 82 Number losing trades 46

Largest winning trade 6,000.00 Largest losing trade (11,012.50)

Average winning trade 817.45 Average losing trade (1,493.75)

Ratio avg win/avg loss .54725 Avg trade (win & loss) (13.13)

Max consec. Winners 9 Max consec. losers 3

Avg # bars in winners 11 Avg # bars in losers 32

Max intraday drawdown (29,043.75)

Profit Factor .97553 Max # contracts held 1

Account size required 29,043.75 Return on account –5.79%

www.fx1618.com



short signals from July 2 to February 28. These dates were derived from cycli-
cal analysis of historical data on soybeans. (Table 6.6 shows the performance of
our seasonal soybean system.)

Inputs: goLongStart(301),goLongEnd(701),goShortStart(702),goShortEnd(228);
Vars: monthAndDay(0);
{The inputs represent the months and days that we can enter long and short
trades}
{301 is March 01 >> can only go long from this date and up to 
701 is July 01 >> this date
702 is July 02 >> can only go short from this date and up to 
228 is February 28 >> this date}
{Let's use the date and extract the information that we need from it to
determine the month and the day}
{If we divide the date by 10000, the remainder is the month and day. We can
use the modulus function} 
monthAndDay = Mod(Date of tomorrow,10000);
if(monthAndDay >= goLongStart and monthAndDay <= goLongEnd) then
begin

buy("Seasonal Buy") tomorrow at Open;
end;

132 Building Winning Trading Systems with TradeStation

Table 6.6
Seasonal Soybean System Performance

TradeStation Strategy Performance Report—SeasonalSoybean 
@S-Daily (4/26/96–4/12/02) 

Performance Summary: All Trades

Total Net Profit (4362.50) Open position P/L 1050.00

Gross Profit 13525.00 Gross Loss (17887.50)

Total # of trades 11 Percent profitable 36.36%

Number winning trades 4 Number losing trades 7

Largest winning trade 7712.50 Largest losing trade (5325.00)

Average winning trade 3381.25 Average losing trade (2555.36)

Ratio avg win/avg loss 1.32320 Avg trade (win & loss) (396.59)

Max consec. Winners 3 Max consec. losers 4

Avg # bars in winners 145 Avg # bars in losers 120

Max intraday drawdown (15162.50)

Profit Factor .75611 Max # contracts held 1

Account size required 15162.50 Return on account –28.77%

www.fx1618.com



if(monthAndDay >= goShortStart or monthAndDay <= goShortEnd) then
{Notice that we had to use "or" instead of "and"—this is due 
to the goShortEnd date is less than the goShortStart date}
begin

sellShort("Seasonal Sell") tomorrow at Open;
end;

Trading Strategies That Work 133

www.fx1618.com



THE SUPER COMBO DAY TRADING STRATEGY

So far we have concentrated on longer-term trend-following systems using
daily bar analysis. We are now going to work with strategies that deal with
intraday bars. Working with intraday bars is the same as working with daily
bars. TradeStation doesn’t care what time frame you are working with (tick,
minute, daily, or weekly); all built-in indicators and functions work the same.
The only time programming gets complex is when you are dealing with more
than one time frame at a time. Many systems trade on intraday bars, but use
daily bars to calculate their buy and sell signals. The Super Combo strategy
falls under this category. This system is designed to day trade the stock indices.
We should call this the kitchen sink day trader, because we have thrown a lot
of different ideas into this one system. This system is rather complex and,
therefore, so is the programming code. If you can understand this code, then
we doubt there are too many trading ideas that you couldn’t program. We will
program a system in a modular format to make it easier to understand. In addi-
tion, the program code will be heavily laden with comments to further aid in
digestion.

Of all of the day trade systems that Futures Truth monitors and ranks, the
systems that feature both break out and failed break out technology always tops
the list of best performers. Instead of reinventing the wheel, we will borrow
this overall concept and use it as a foundation for our own system.

First off, let’s discuss the break out component of the Super Combo. If
you look at a daily bar on almost any trading instrument, you will notice that
the high price is always greater than or equal to the open and close. On non-
limit days, it is always higher than the low. At some time during the day, there
was more demand than there was supply and, therefore, the market moved up
above the open. Conversely, when supply was greater than demand, the mar-
ket moved down. The objective of an open range break out system is to try and
capture some of the market movement between the open and high (or close) or
the open and low (or close). The key to successful break out systems is find-
ing the “sweet spot” above or below the open that foretells further movement
in that direction. The worst feeling in the world for a day trader is buying at or
near the high and selling at or near the low. Your buy point must be above the
high of the day when the market has no direction and at the same time must be
well below the high when the market has a strong directional move. Your sell
point must have the same attributes. You are probably thinking to yourself that
this is impossible. You would be right. But we all know that trading is not
impossible, difficult yes, but not impossible. This is the beauty of the Super
Combo; it knows it must stick its neck out and buy/sell break outs, but it also
knows that there is a great likelihood that the initial break out will fail. This is
where the failed break out logic kicks into high gear. Once a certain price level
is achieved (upside or downside), the system switches gears and begins to look

134 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



for failed break out opportunities. How many times have you seen a bar chart
where the open is near the high and the close is near the low or just the oppo-
site? These are perfect examples of failed break out opportunities. These con-
cepts are how the Super Combo enters the market.

Once a trade has been initiated, the system uses protective, break-even,
and trailing stops to manage the position. The system also utilizes a protective
stop reversal. Sometimes a trade is put on and failure occurs within the next
couple of hours. This can occur without the system sensing a failed break out.
So, under certain conditions, we allow the system to reverse its position at the
protective stop level, even when a failed break out isn’t signaled. After the sys-
tem reaches a certain profit level, the protective stop moves to a break-even
level. Later in the afternoon, when the likelihood of profit taking and retrace-
ments of the overall trend increases, the protective or break-even stops switch
to a trailing stop. It may seem to you that the exit techniques are much more
complex and thought out than the entry techniques. Many traders don’t real-
ize that trade management determines the success of the entry technique and,
therefore, they spend all their time trying to figure out the best way to get into
the market. Research time should be split between entries and exits. If all goes
well with our entry, the position will be closed at the end of trading. There is
one more important point concerning this system: no trade can be taken within
30 minutes of the open time. This filter (a technique to help pick out good
trades) allows the market to digest any reports that come out before and
slightly after the stock indices open. If you take a look at the first 30 minutes
of a stock index, especially on report days, you will discover an extreme level of
volatility. This volatility will play havoc with any break out-based trading strat-
egy. So, let’s just skip it.

Now that we know the overall approach of the Super Combo, let’s get a
little more specific. The open range break out shouldn’t be foreign to you
because we described it in the Thermostat strategy. Nor should the buy easier
day and sell easier day concept be unfamiliar. The Super Combo system uti-
lizes both ideas to calculate the entry points for the break out component. The
first step is to see if we can even take a trade today. We have spent many hours
researching the consequences of wide range and small range bars and have
drawn the conclusion that small range bars usually give a hint to a subsequent
wide range bar. So, if yesterday was a small range bar, then we can attempt a
trade today; or else we simply skip today and look for something else to do. We
consider a bar to be a small range bar (SRB) by comparing the absolute value
of the Open – Close of yesterday’s bar to the average of the absolute values of
the past ten days’ Open – Close values. If the bars’ Open to Close range is less
than 85 percent of the ten-day average open to close range, then it is consid-
ered an SRB. Once we find out that we can trade, we must then determine if
today is a buy or sell easier day. A buy easier day occurs when the close is less
than or equal to the previous day’s close. A sell easier day is simply the con-

Trading Strategies That Work 135

www.fx1618.com



verse; today’s close is greater than the previous day’s close. (Note: We give a
slight bias to the buy easier day in case the close of today and yesterday are
exactly the same.) Remember, we are making it easier to buy or sell; we are not
ruling out a potential buy or sell. Prior to the bear market of 2000, you would
be surprised at the number of systems that only bought or made it difficult to
sell. If today is a buy easier day, we can buy at the open of today plus 30 per-
cent of the ten-day average true range, and sell at the Open of today minus 60
percent of the ten-day average range (don’t use true ranges). On the other
hand, if today is a sell easier day, we can sell at the open of today minus 30 per-
cent of the ten-day average range, and buy at the open of today plus 60 percent
of the ten-day average range.

Now that we understand the break out component of the Super Combo,
let’s delve into the failed break out methods. In terms of our system, the fol-
lowing three scenarios define a failed upside break out:

1. The market gaps above yesterday’s high a certain amount and then trades
below it a certain amount.

2. The market opens below and moves above yesterday’s high a certain
amount and then trades below it a certain amount.

3. A long position is initiated and failure occurs before 12:00 P.M. central
time (CT). Failure is defined as being stopped out. We take advantage of
this if failure doesn’t happen too quickly.

The opposite is true for a failed break out to the downside. We look to get in
the market when any of these three scenarios occur. This type of entry can be
defined as countertrend; a position is being entered against the prevailing trend.

When we enter a trade from a break out method, we use a protective stop
equal to 25 percent of the average range or three full points, whichever is
greater. By using a percentage-based protective stop, we are adapting our pro-
tection to the current market condition. If a market is exhibiting high volatil-
ity, then a tight fixed stop will get you stopped out with a loss on most trades.
On the flipside of the coin, if the market is exhibiting low volatility, then a
large fixed stop will risk more than the potential reward and eventually net fail-
ure. Adaptive parameters or stops must have boundaries so they won’t take on
ridiculous values, hence the three-point floor. In today’s volatile markets, a
protective stop of less than three-points is a disaster waiting to happen. We use
the same protective stop on the failed break out entry with one exception. If we
enter a position at a stop loss level, we use 15 percent instead of 25 percent of
the average range or three full points. The reason behind the different protec-
tive stop level for this entry is that there is a chance the market may not have
any direction for the entire day. The market proved indecisive by stopping our
initial position out. We will nibble on what the market is offering, but we will
use a tight stop in case the market performs a double whammie. If the market

136 Building Winning Trading Systems with TradeStation

www.fx1618.com



is looking kindly on us and provides a profit equal to 50 percent of the 10-day
average range, then we pull our protective stop up to a break-even point. In
doing so, we achieve a free trade minus slippage and commission. Later in the
afternoon, specifically after 2:30 P.M. CT, we trail our protective stop
below/above the low/high of the prior 3 five minute bars. Again, through
extensive studies, we have discovered that the market will more times than
not, fade the overall daily trend in the last 30 to 45 minutes of trading. Losing
all of the day’s profit in the last fifteen minutes is almost as heartbreaking as
buying the high and selling the low. Since we are not trying to scalp the mar-
ket, we will only test the waters twice on a daily basis. In other words, we will
only initiate one long position and/or one short position during the day. Once
we have entered the market twice, we stop looking for another entry. That’s it.
Finito. We have just about given you everything except the kitchen sink. There
should be enough ideas in this one system to build a whole slew of different
strategies.

The Super Combo sounds rather complicated, doesn’t it? If you think it
sounds complicated, wait until we try to program it. The best way to attack this
monster is one modular block at a time. First, let’s pseudocode all of the cal-
culations that deal with daily bars. This may be a good time to introduce
TradeStation’s capabilities that deal with multiple data streams and time
frames. With TradeStation and EasyLanguage, you can analyze up to five dif-
ferent data and/or time frames. In the case of the Super Combo, we will deal
with two different time frames: five minute and daily. We will use the daily bar
data to feed our calculations and the five-minute data to actually enter our
trades. Why five-minute bars instead of fifteen-minute or any other time inter-
val bars? you may ask. If at all possible, it is always best to test your trading
ideas on the smallest bar increment that you can. If we had the computer power
and time, we would have tested on individual tick bars. The higher the time
resolution, the more accurate your testing will be. We will let the online
TradeStation help further explain this:

Calculating Orders on Historical Data Time-based bars include the Open,
High, Low, and Close for the specified time period. When you work with
historical data, TradeStation doesn’t know the chronological order of the
transactions that make up the bar. The only transactions for which the
chronology is known are the Open, which occurred first, and the Close,
which occurred last. With time-based bars based on historical data there is
no way to know whether the market opened and then went down, or the
market opened and then went up.

However, because the order of ticks can be important, two general
rules were established about price movement and the chronological order
in which ticks occur.

Assumption 1—The order in which prices on a bar are reached
relates to the proximity of the Open to the Low and to the High.

Trading Strategies That Work 137

www.fx1618.com



When the Open is closer to the Low than to the High, TradeStation
assumes that the Low was reached first. Likewise, if the Open is closer to
the High, TradeStation assumes that the High was reached first. For exam-
ple, say you have a buy order at 100. You protect yourself against losses at
97 points or lower, and want to exit the position at 101 or higher. The
Open is 99 points. The High of the day is 103 and the Low is 92, so
the Open is closer to the High. In this case, your buy order is filled at 100
and your strategy will generate your profit-taking exit order at 101, thus
recording a profit of 1 point.

However, it’s possible that in reality the price climbed to 100, at
which point your entry order was filled, and then it dipped, hitting 99,
before climbing back up to 101. In this case, you would actually have taken
a loss of 1 point instead of a profit of 1 point. So, looking at historical data,
and based on the market assumption described earlier, TradeStation would
record this trade as a winner, when it would in fact have been a loser. The
opposite could happen also, where a trade could be recorded as a loser
when it was actually a winner.

To more closely simulate market activity in these cases, TradeStation
developed what is known as Bouncing Ticks. When enabled, Trade-
Station automatically sends the data down by a percentage (the TradeStation
default is 10%) immediately after a buy or sell order, and then comes back
up to the next item on the bar (High, Low, or Close). This action more
closely resembles what happens using real-time data.

Using this 10 percent setting on the example above, the buy would
have happened at 100, and would have dropped immediately by 10% to 99
(to more closely resemble real-time results), your exit would be recorded at
99, and the bar would more correctly reflect the losing trade that would
have happened if you had been using real-time data.

Assumption 2—Symbols trade at every price along the bar.
The second assumption is that a symbol trades at every price along

the bar. That may not always be an accurate assumption. If, using the
example above again, you had a buy order at 100, and the symbol actually
traded at 99 and then jumped to 101, the strategy would record your buy
at 100, even though you actually were filled at 101. If your exit was at 110
then, the strategy would record a profit of 10 points, even though your true
profit would be only 9 points. This assumption might cause a strategy to
appear more or less profitable than it actually was.

TradeStation allows you to avoid both of these assumptions by set-
ting a back-testing resolution. Setting a back-testing resolution allows your
strategies to be evaluated according to the actual prices in the order they
occurred.

For instructions on enabling the Bouncing Ticks option, see “Setting
the Bouncing Ticks Option.”

The smaller the time increment that you are dealing with the less there is
a chance for error. A fifteen-minute bar is made up of three 5-minute bars.
Inside the fifteen-minute bar there may be a price that was never traded; a gap
between the high or low and the subsequent open price on a five-minute bar.

138 Building Winning Trading Systems with TradeStation

www.fx1618.com



Also, the ambiguity of which occurred first, the high price or the low price,
decreases with a smaller time frame. Figure 6.5, which is the same as Figure
4.6, again illustrates how the accuracy of actual market movement increases
with smaller time interval bars.

Now that we know why we are using five-minute bars, let’s move on.
Before we got on the back-testing data resolution tangent, we were about to
program the daily bar based calculations.

Super Combo Daily Data Bar Calculation Pseudocode

averageRange = Average(Range of Daily Data,10)
averageOCRange = Average(Abs(Open-Close of Daily Data),10)
canTrade = Abs(Open-Close of Daily Data) < 85% of averageOCRange
buyEasierDay = 0
sellEasierDay = 0
if(Close of Daily Data <= Close[1] of Daily Data) then buyEasierDay = 1
if(Close of Daily Data > Close[1] of Daily Data) then sellEasierDay = 1
if(buyEasierDay) then

buyBOPoint = Open of tomorrow + 30% of averageRange
sellBOPoint = Open of tomorrow – 60% of averageRange

if(sellEasierDay) then
sellBOPoint = Open of tomorrow – 30% of averageRange
buyBOPoint = Open of tomorrow + 60% of averageRange

longBreakPt = High of Daily Data + 25% of averageRange {upside break out 
achieved}

shortBreakPt = Low of Daily Data – 25% of averageRange {dnside break out 
achieved}

longFBOPoint = Low of Daily Data + 25% of averageRange {dnside BO failure 
buy pt}

shortFBOPoint = High of Daily Data – 25% of averageRange {upside BO failure 
sell pt}

Trading Strategies That Work 139

Figure 6.5 Incorrect Daily Bar Assumption

www.fx1618.com



Now for the 5-minute bar pseudocode. We must initialize some variables on
the first bar of the day.

if(Date <> Date[1]) then {a little trick to determine the first bar
of the day}

barCount    = 1
intraHigh   = 0
intraLow    = 99999999
buysToday   = 0
sellsToday  = 0
currTrdType = 0

EasyLanguage does not have a convenient way to keep track of the intraday
high and low, so let’s just do it ourselves.

if(High > intraHigh) intraHigh = High   {must keep high of current date
manually}

if(Low < intraLow) intraLow = Low       {must keep low of current date
manually}

If this bar’s date is the same as the previous bar, then we know that we are pro-
gressing through today.

if(Date = Date[1]) then barCount = barCount + 1

If barCount is greater than 6, then we know that we have surpassed the first six
bars of the day.

if(barCount > 6) then {skipped first 6 – 5min bars or first 30 minutes}

Let’s keep track of the number of buy entries and sell entries for today.

if(MarketPosition = 1) then buysToday = 1 {if we are long we must have bought
today}

if(MarketPosition = -1) then sellsToday = 1 {same goes for being short}

Now let’s enter the market on a buy or sell break out.

if(buysToday = 0 and Time < 1430) then Buy("LBreakOut") next bar at 
buyBOPoint stop

if(sellsToday = 0 and Time < 1430) then Sell("SbreakOut") next bar at 
sellBOPoint stop

Has the market exceeded yesterday’s High plus 25 percent of the average range?

if(intraHigh > longBreakPoint and Time < 1430) then

140 Building Winning Trading Systems with TradeStation

www.fx1618.com



If it has, look to sell as the market moves back down to yesterday’s high – 25
percent of the average range.

if(sellsToday = 0) then SellShort("SfailedBO") next bar at shortFBOPoint stop

Another failed break out indicator occurs when the market breaks out and
gets us into a position and then reverses and stops us out. We can enter a short
position on this type of failed breakout if we are stopped out from a long posi-
tion and at least four 5 minute bars have passed since we entered the long po-
sition and it is before 12:00 p.m. central time.  We don’t allow a reversal if the
market immediately stops us out – this is usually a sign of a knee jerk reaction. 

if(Time < 2300 and sellsToday = 0 and 
longLiqPoint <> EntryPrice and BarsSinceEntry >= 4) then

SellShort(“LongLiqRev”) next bar at longLiqPoint stop;

Ditto for the failed break out on the short side.

if(intraLow < shortBreakPoint and Time < 1430) then
if(buysToday = 0) then Buy("BfailedBO") next bar at longFBOPoint stop

if(Time < 1200 and buysToday = 0 and 
shortLiqPoint <> EntryPrice and BarsSinceEntry >= 4) then

Buy(“ShortLiqRev”) next bar at shortLiqPoint stop;

Now this is where it gets a little complicated with the trade management
algorithm.

if(MarketPosition = 1) then

Most of the time, our long liquidation point will be the entry price – 25 per-
cent of the average range or three full points whichever is greater.

longLiqPoint = MinList(EntryPrice – 25% of averageRange,EntryPrice - 3.00
points) {normal reversal use 25%}

However, if we are reversing a short position at a protective stop level then we
must use 15 percent. EasyLanguage doesn’t have a simple way to determine
which filter got you into the current trade. We can figure if the previous posi-
tion was short and the current position is long and the last bar was the trigger
bar and the high of the trigger bar is greater than or equal to our short liqui-
dation point, and our short liquidation point is closer to the market than the
short failed break out point, then we know we were reversed on to long from a
short liquidation point.

Trading Strategies That Work 141

www.fx1618.com



if(MarketPosition(1) = -1 and BarsSinceEntry(0) = 1 and
High[1]>=shortLiqPoint and shortLiqPoint < shortFBOPoint) then
curTrdType  = -2
if(curTrdType = -2) then

longLiqPoint = MinList(EntryPrice – 15% of 
averageRange,EntryPrice - 3.00 points)  {long liq reversal use 15%}

If we are long and the high of the five-minute bar has exceeded the Entry
Price plus 50 percent, then we need to move our stop to break even.

if(High > EntryPrice + 50% of averageRange) then longLiqPoint = EntryPrice

If time is greater than 2:30 P.M. CT, then we start trailing our long liquidation
point from the lowest low of the past 3 five-minute bars.

if(time >= 1430) then longLiqPoint = MaxList(lonqLiqPoint,Lowest(Low,3))

Order entry module for either liquidating our long position or initiating a
short position at our long liquidation point.

if(Time < 1200 and sellsToday = 0 and longLiqPoint <> EntryPrice) and
BarsSinceEntry >= 4) then

Sell Short ("LongLiqRev") next bar at longLiqPoint stop
else

Sell ("LongLiq") next bar at longLiqPoint stop

Ditto for the short side.

If(MarketPosition = -1) then
shortLiqPoint = MaxList(EntryPrice + 25% of averageRange,EntryPrice + 

3.00 points) {normal reversal use 25%}
if(MarketPosition(1) = 1 and BarsSinceEntry(0) = 1 and
(Low[1] <= longLiqPoint and longLiqPoint > longFBOPoint) then
curTrdType  = +2
if(curTrdType = +2) then

shortLiqPoint = MinList(EntryPrice – 15% of
averageRange,EntryPrice - 3.00 points)
{long liq reversal use 15%}

if(Low <= EntryPrice – 50% of averageRange) shortLiqPoint = EntryPrice
if(Time < 1200 and buysToday = 0 and shortLiqPoint <> EntryPrice) then

Buy ("ShortLiqRev") next bar at shortLiqPoint stop
else

BuyToCover ("ShortLiq") next bar at shortLiqPoint stop
If(time >= 1430) then shortLiqPoint = 
MinList(shortLiqPoint, Highest(High,3))

This next function call gets us out of the market at the closing bell.

142 Building Winning Trading Systems with TradeStation

www.fx1618.com



SetExitOnClose

Did you notice how our pseudocode evolved into almost pure EasyLan-
guage? The more programming that you get under your belt, the less English-
like you will be with your pseudocode. You may think you can save time by
cutting out this middle step, but you can’t. John and I have programmed thou-
sands of systems, and simply outlining the structure and variables ahead of
time always saves time in the long run.

Super Combo Code

{Super Combo by George Pruitt
This intraday trading system will illustrate the multiple data handling
capabilities of TradeStation. All pertinent buy and sell calculations will be
based on daily bars and actual trades will be executed on 5-min bars. I have
made most of the parameters input variables.}

Inputs:waitPeriodMins(30),initTradesEndTime(1430),liqRevEndTime(1200),
thrustPrcnt1(0.30),thrustPrcnt2(0.60),breakOutPrcnt(0.25),
failedBreakOutPrcnt(0.25),protStopPrcnt1(0.25),protStopPrcnt2(0.15),
protStopAmt(3.00),breakEvenPrcnt(0.50),avgRngLength(10),avgOCLength(10);

Variables:averageRange(0),averageOCRange(0),canTrade(0),buyEasierDay(FALSE),
sellEasierDay(FALSE),buyBOPoint(0),sellBOPoint(0),longBreakPt(0),
shortBreakPt(0),longFBOPoint(0),shortFBOPoint(0),barCount(0),
intraHigh(0),intraLow(999999),buysToday(0),sellsToday(0),
currTrdType(0),longLiqPoint(0),shortLiqPoint(0),yesterdayOCRRange(0),
intraTradeHigh(0),intraTradeLow(999999);

{Just like we did in the pseudocode—let's start out with the daily bar
calculations. If Date <> Date[1]—first bar of day}
if(Date <> Date[1]) then {save time by doing these calculations once per day}
begin

averageRange = Average(Range,10) of Data2; {Data 2 points to daily bars}
yesterdayOCRRange = AbsValue(Open of Data2-Close of Data2);
averageOCRange = Average(AbsValue(Open of Data2-Close of Data2),10);
canTrade = 0;
if(yesterdayOCRRange< 0.85*averageOCRange) then canTrade = 1;
buyEasierDay = FALSE;
sellEasierDay = FALSE;
{See how we refer to Data2 - the daily data}
if(Close of Data2 <= Close[1] of Data2) then buyEasierDay = TRUE;
if(Close of Data2 > Close[1] of Data2) then sellEasierDay = TRUE;

if(buyEasierDay) then
begin

buyBOPoint = Open of data1 + thrustPrcnt1*averageRange;
sellBOPoint = Open of data1 - thrustPrcnt2*averageRange;

Trading Strategies That Work 143

www.fx1618.com



end;
if(sellEasierDay) then
begin

sellBOPoint = Open of data1 - thrustPrcnt1*averageRange;
buyBOPoint = Open of data1 + thrustPrcnt2*averageRange;

end;

longBreakPt = High of Data2 + breakOutPrcnt*averageRange;
shortBreakPt = Low of Data2 - breakOutPrcnt*averageRange;

shortFBOPoint = High of Data2 - failedBreakOutPrcnt*averageRange;
longFBOPoint = Low of Data2 + failedBreakOutPrcnt*averageRange;

{Go ahead and initialize any variables that we may need later on in the day}
barCount = 0;
intraHigh = 0;intraLow = 999999; {Didn't know you could do this}
buysToday = 0;sellsToday = 0;{You can put multiple statements on one 

line}
currTrdType = 0;

end;   {End of the first bar of data}
{Now let's trade and manage on 5-min bars}
if(High > intraHigh) then intraHigh = High;
if(Low < intraLow ) then intraLow = Low;
barCount = barCount + 1; {count the number of bars of intraday data}
if(barCount > waitPeriodMins/BarInterval and canTrade = 1) then
{have we waited long enough—wait PeriodMin is an input variable and
BarInterval is set by TradeStation. Wait PeriodMins = 30 and BarInterval = 5,
so 30/5 = 6}
begin

if(MarketPosition = 0) then
begin

intraTradeHigh = 0;
intraTradeLow = 999999;

end;

if(MarketPosition = 1) then
begin

intraTradeHigh = MaxList(intraTradeHigh,High);
buysToday = 1;

end;
if(MarketPosition =-1) then
begin

intraTradeLow = MinList(intraTradeLow,Low);
sellsToday = 1;

end;

if(buysToday = 0 and Time < initTradesEndTime) then
Buy("LBreakOut") next bar at buyBOPoint stop;

if(sellsToday = 0 and Time < initTradesEndTime) then

144 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



SellShort("SBreakout") next bar at sellBOPoint stop;
if(intraHigh > longBreakPt and sellsToday = 0 and Time < 

initTradesEndTime) then
SellShort("SfailedBO") next bar at shortFBOPoint stop;

if(intraLow < shortBreakPt and buysToday = 0 and Time < 
initTradesEndTime) then

Buy("BfailedBO") next bar at longFBOPoint stop;
{The next module keeps track of positions and places protective stops}

if(MarketPosition = 1) then
begin

longLiqPoint = EntryPrice - protStopPrcnt1*averageRange;
longLiqPoint = MinList(longLiqPoint,EntryPrice - protStopAmt);
if(MarketPosition(1) = -1 and BarsSinceEntry = 1 and

High[1] >= shortLiqPoint and shortLiqPoint < shortFBOPoint) 
then

currTrdType = -2; {we just got long from a short liq reversal}
if(currTrdType = -2) then
begin

longLiqPoint = EntryPrice - protStopPrcnt2*averageRange;
longLiqPoint = MinList(longLiqPoint,EntryPrice - 

protStopAmt);
end;
if(intraTradeHigh >= EntryPrice + breakEvenPrcnt*averageRange) 

then
longLiqPoint = EntryPrice; {BreakEven trade}

if(Time >= initTradesEndTime) then
longLiqPoint = MaxList(longLiqPoint,Lowest(Low,3)); {Trailing 

stop}
if(Time < liqRevEndTime and sellsToday = 0 and

longLiqPoint <> EntryPrice and BarsSinceEntry ≥ 4) then
begin

SellShort("LongLiqRev") next bar at longLiqPoint stop;
end
else begin

Sell("LongLiq") next bar at longLiqPoint stop;
end;

end;
if(MarketPosition =-1) then
begin

shortLiqPoint = EntryPrice+protStopPrcnt1*averageRange;
shortLiqPoint = MaxList(shortLiqPoint,EntryPrice + protStopAmt);
if(MarketPosition(1) = 1 and BarsSinceEntry(0) = 1 and

Low [1] <= longLiqPoint and longLiqPoint > longFBOPoint) then
currTrdType = +2; {we just got long from a short liq reversal}

if(currTrdType = +2) then
begin

shortLiqPoint = EntryPrice + protStopPrcnt2*averageRange;
shortLiqPoint = MaxList(shortLiqPoint,EntryPrice + protStopAmt);

end;

Trading Strategies That Work 145

www.fx1618.com



if(intraTradeLow <= EntryPrice - breakEvenPrcnt*averageRange) then
shortLiqPoint = EntryPrice; {BreakEven trade}

if(Time >= initTradesEndTime) then
shortLiqPoint = MinList(shortLiqPoint,Highest(High,3)); 

{Trailing stop}
if(Time < liqRevEndTime and buysToday = 0 and

shortLiqPoint <> EntryPrice and BarsSinceEntry ≥ 4) then
begin

Buy("ShortLiqRev") next bar at shortLiqPoint stop;
end
else begin

BuyToCover("ShortLiq") next bar at shortLiqPoint stop;
end;

end;
end;
SetExitOnClose;

The Super Combo program demonstrates how to:

• Use the keyword date to determine the first intraday bar of the day.
• Create and program a complete trade management scheme.
• Use the keyword time to determine optimum trading periods.
• Use and manage multiple data input.
• Exit all positions at the close of the day.

Super Combo trading performance is summarized in Tables 6.7 and 6.8. Since
we have a limited amount of historical intraday data to work with, the perform-
ance statistics found in Table 6.8 were generated with our Excalibur testing
software.

A visual example of how this system enters and exits trades is shown in
Figure 6.6.

Super Combo Summary

Wow, this strategy was complicated to program. It wouldn’t have been if Easy-
Language had provided a little bit more information on which filter initiated
the current trade. The complicated part of the program revolves around deter-
mining if we were reversed on a liquidation point and which protective stop to
use. We used one liquidation variable for all of our trade management stops;
the value of the liquidation variable changed dependent on trade type, time,
and open trade profit. If you have simpler exit schemes, you can use the built-
in EasyLanguage functions for protective stops and profit objectives. Analyz-
ing different time frames with multiple data streams is much easier than doing
the same with only one data stream. You could have done the same thing with

146 Building Winning Trading Systems with TradeStation

www.fx1618.com



a single five-minute bar chart, but the programming would be considerably
more difficult. You could build daily bars from the intraday bars and keep track
of all the daily statistics. This could be accomplished by creating array variables
and keeping track of when the day begins and ends and the highest and lowest
point achieved on an intraday basis. Like we said previously, most traders don’t
use arrays in their programming, but they are handy when you start doing
advanced analysis. For this reason, we have included a strategy that incorpo-
rates arrays in Chapter 8.

Back to the subject of using multiple data streams. We have just found
that multiple time frame analysis is easier when you can refer to a different data
stream for each time frame. Super Combo did relatively well over the past six
years. Remember, we haven’t done any work with optimizing the many vari-
ables in this system. We leave any optimization, tweaking, or application to
other markets to you, the reader. The framework of Super Combo is the same
framework of many systems that sell for thousands of dollars, so it is up to you
to transform this system into your own and make it ten times better.

Trading Strategies That Work 147

Table 6.7
Super Combo Performance Table 1

TradeStation Strategy Performance Report—SuperCombo @SP-5 min 
(2/12/2001–4/18/2002) $100 for Slippage and Commission

Performance Summary: All Trades

Total Net Profit 27,175.00 Open position P/L 0.00

Gross Profit 126,725.00 Gross Loss (99,550.00)

Total # of trades 155 Percent profitable 38.06%

Number winning trades 59 Number losing trades 96

Largest winning trade 7,400.00 Largest losing trade (2,125.00)

Average winning trade 2,147.88 Average losing trade (1,036.98)

Ratio avg win/avg loss 2.0713 Avg trade (win & loss) 175.32

Max consec. Winners 5 Max consec. losers 10

Avg # bars in winners 48 Avg # bars in losers 20

Max intraday drawdown (13,725.00)

Profit Factor 1.2730 Max # contracts held 1

Account size required 13,725.00 Return on account 198.00%

www.fx1618.com



148 Building Winning Trading Systems with TradeStation

Figure 6.6 Super Combo Trade

Table 6.8
Super Combo Performance Table 2

Super Combo Performance from 1986–2/28/2002

SP500 5 minute bars Test 16.17 years 4079 trading days

Total Net P/L 188913$ Avg. Net/Year 11685$

Optimal f 0.19 Geometric Mean 1.003

%Winning Months 59% Avg. %Ret. MaxDD/Year 39%

Avg. %Ret. with Time 165%

Max DrawDn ClsTrd 24025$

Max DrawDn w/OTE 24025$

Best Trade 10350$ Worst Trade –2750$

Average Trade 89$ Net Prof:Loss Ratio 1.3

Average Win 981$ Average Loss –568$

Long Net P/L 104288$ Short Net P/L 84625$

# of Trades 2129 Avg. Trades/Year 132

# of Winning Trade 902 Percent Winners 42.40%

# of Losing Trades 1227 Most Cons. Losses 11

Avg. Days Per Trade 0.5 Longest Flat Time 1077 days

%Time in the Market 24% Sharpe Ratio 0.25

www.fx1618.com



THE GHOST TRADER TRADING STRATEGY

The code for the Ghost Trader is designed more as a template than a complete
trading strategy. Some trading strategies incorporate the success of the last
trade signal in the calculation/determination of the next trade signal. We have
tested several methodologies that only initiate new positions after a losing
trade. Some traders feel that there exists a high probability of failure on the
next trade signal if the last trade was closed out with a profit. This approach is
much easier to trade than historically back test. It’s easy to keep track of your
trades and then skip the hypothetical trades that don’t meet your criteria. In
our example of waiting for a losing trade before initiating a new trade, you
would simply stop trading your account after a winning trade and start paper
trading and wait until you have a loser on paper. Once a paper loser occurs, the
next trade would be initiated in the real world. The code for Ghost Trader
demonstrates how to keep track of simulated trades and only issue the trades
that meet a certain criteria.

The core trading strategy of the Ghost Trader is based off of an expo-
nential moving average and a RSI indicator.

if(marketPosition = 0 and myProfit < 0 and Xaverage(Close,9) > 
Xaverage(High,19) and

RSI(Close,9) crosses below 70) then
begin

buy next bar at High stop;
end;

if(marketPosition = 0 and myProfit < 0 and Xaverage(Close,9) < 
Xaverage(Low,19) and

RSI(Close,9) crosses above 30) then
begin

sellShort next bar at Low stop;
end;

Long positions are initiated on the next day at today’s high on a stop order.
This order is only issued if the nine day exponential moving average of closes
is greater than the 19 day exponential moving average of high prices and the
nine day RSI of closing prices is crossing from above to below the 70 reading.
Short positions are initiated in just the opposite fashion. Long positions are liq-
uidated if today’s market action penetrates the lowest low of the past 20 days
and short positions are liquidated if today’s market action penetrates the high-
est high of the past 20 days. These entry/exit techniques are interesting but are
not the main focus of the Ghost Trader. The main focus of the Ghost Trader
is to keep track of a trading system and issue only the trade signals that meet a
certain criteria. In our case, actual trade signals should only be issued after a
real or simulated losing trade. The following code keeps track of all trades—
real and simulated.

Trading Strategies That Work 149

www.fx1618.com



Ghost System Code

{Ghost system}
{Look to see if a trade would have been executed today and keep track
of our position and our entry price. Test today's high/low price
against the trade signal that was generated by offsetting our calculations
by one day.}
if(myPosition = 0 and Xaverage(Close[1],9) > Xaverage(High[1],19) and

RSI(Close[1],9) crosses below 70 and High >= High[1]) then
begin

myEntryPrice = MaxList(Open,High[1]); {Check for a gap open}
myPosition = 1;

end;
if(myPosition = 1 and Low < Lowest(Low[1],20) )then
begin

value1 = MinList((Lowest(low[1],20)),Open); {Check for a gap open}
myProfit = value1 - myEntryPrice            {Calculate our trade 

profit/loss}
myPosition = 0;

end;
if(myPosition = 0 and Xaverage(Close[1],9) < Xaverage(Low[1],19) and

RSI(Close[1],9) crosses above 30 and Low <= Low[1]) then
begin

myEntryPrice = MinList(Open,Low[1]);
myPosition =-1;

end;
if(myPosition =-1 and High > Highest(High[1],20)) then
begin

value1 = MaxList((Highest(High[1],20)),Open);{Check again for a gap 
open}

myProfit = myEntryPrice - value1;    {Calculate our trade profit/loss}
myPosition = 0;

end;

See how we compare today’s market action against the signal that was poten-
tially generated on yesterday’s bar:

if(myPosition = 0 and Xaverage(Close[1],9) > Xaverage(High[1],19) and
RSI(Close[1],9) crosses below 70 and High >= High[1]) then

We are checking to see if yesterday’s nine day exponential moving average of
closes crossed above yesterday’s 19 day exponential moving average if highs
and yesterday’s nine day RSI of closes reading crossed down below 70 and
today’s high price penetrated yesterday’s high price. If all of these criteria were
met yesterday and today, then we know we should be in a long position (real or
simulated) and the following block of code is executed:

150 Building Winning Trading Systems with TradeStation

www.fx1618.com



begin
myEntryPrice = MaxList(Open,High[1]); {Check for a gap open}
myPosition = 1;

end;

Notice that we did not instruct TradeStation to issue an order. We are just
simply trying to keep track of all trades and we do so by setting our own vari-
ables, myEntryPrice and myPosition, accordingly. Remember that we are plac-
ing stop orders for the next day at the price of today’s high, and since we are
keeping track of myEntryPrice, we need to check and see if the Open price of
today gapped above our stop price. If the Open did gap above our stop, then we
need to manually set myEntryPrice equal to the Open. We also keep track of
liquidated trades:

if(myPosition = 1 and Low < Lowest(Low[1],20) )then
begin

value1 = MinList((Lowest(low[1],20)),Open); {Check for a gap open}
myProfit = value1 - myEntryPrice;    {Calculate our trade profit/loss}
myPosition = 0;

end;

Since TradeStation is not keeping track of all our trades, in addition to myPo-
sition and myEntryPrice, we must keep track of the profit/loss from the last
trade by storing the information in myProfit.

Once myProfit is negative (a loss occurred) we can start issuing real trade
orders. The following code issues the real signals based on the entry technique
and the value of myProfit.

Real System Code

{Real System}
{Only enter a new position if the last simulated or real trade was a loser.
If last trade was a loser, myProfit will be less than zero.}

if(marketPosition = 0 and myProfit < 0 and Xaverage(Close,9) > 
Xaverage(High,19) and 

RSI(Close,9) crosses below 70) then
begin

buy next bar at High stop;
end;
if(marketPosition = 0 and myProfit < 0 and Xaverage(Close,9) < 

Xaverage(Low,19) and 
RSI(Close,9) crosses above 30) then
begin

sellShort next bar at Low stop;
end;

Trading Strategies That Work 151

www.fx1618.com



if(marketPosition = 1) then sell next bar at Lowest(Low,20) stop;
if(marketPosition =-1) then buytocover next bar at Highest(High,20) stop;

The core entry/exit strategy issued the following signals:

12/1/2000 Sell 1 .9446 $0.00 $0.00 Short
2/5/2001 SExit 1 .9098 $0.00 $0.00 Cover 4350.0000
3/14/2001 Sell 1 .8674 $0.00 $0.00 Short
5/3/2001 SExit 1 .8563 $0.00 $0.00 Cover 1387.5000
7/3/2001 Sell 1 .8272 $0.00 $0.00 Short
7/20/2001 SExit 1 .8342 $0.00 $0.00 Cover (875.0000)
8/13/2001 Buy 1 .8433 $0.00 $0.00 Buy
10/11/2001 LExit 1 .8385 $0.00 $0.00 Sell (600.0000)
10/30/2001 Sell 1 .8323 $0.00 $0.00 Short
11/8/2001 SExit 1 .8443 $0.00 $0.00 Cover (1500.0000)
11/21/2001 Sell 1 .8250 $0.00 $0.00 Short
3/6/2002 SExit 1 .7669 $0.00 $0.00 Cover 7262.5000
3/11/2002 Buy 1 .7903 $0.00 $0.00 Buy
4/1/2002 LExit 1 .7543 $0.00 $0.00 Sell (4500.0000)
5/1/2002 Buy 1 .7861 $0.00 $0.00 Buy

The core entry/exit technique with the last trade was a loser criteria issued the
following trades:

12/1/2000 Sell 1 .9446 $0.00 $0.00 Short
2/5/2001 SExit 1 .9098 $0.00 $0.00 Cover 4350.0000
8/13/2001 Buy 1 .8433 $0.00 $0.00 Buy
10/11/2001 LExit 1 .8385 $0.00 $0.00 Sell (600.0000)
10/30/2001 Sell 1 .8323 $0.00 $0.00 Short
11/8/2001 SExit 1 .8443 $0.00 $0.00 Cover (1500.0000)
11/21/2001 Sell 1 .8250 $0.00 $0.00 Short
3/6/2002 SExit 1 .7669 $0.00 $0.00 Cover 7262.5000
5/1/2002 Buy 1 .7861 $0.00 $0.00 Buy

Over this time period, waiting for a losing trade proved to be much more suc-
cessful. The Ghost Trader was designed as a template to help in the program-
ming of trading strategies that base the next trade signal off of the results of the
prior signal. You could easily modify the code and only issue real trade signals
after two consecutive losers.

152 Building Winning Trading Systems with TradeStation

www.fx1618.com



THE MONEY MANAGER TRADING STRATEGY

An effective trading strategy is only part of a successfully trading plan. If you
want your trading to perpetuate, you better have some form of money man-
agement built into your overall trading approach. Money management
involves examining the concepts of risk and return in reference to investor
preference. The objective is to choose a desired rate of return and then mini-
mize the risk associated with that rate of return. Money management concepts
should be used to make the most efficient use of trading capital. We can’t
emphasize enough the importance of using money management in a trading
plan. The Money Manager strategy is a simple system that incorporates and
demonstrates some simple money management concepts. The concepts we are
presenting go beyond simple profit objectives or protective stops. These ideas
fall within the realm of the underlying trading strategy. We go beyond this and
move into the areas of capital allocation. The concepts that are presented in
this strategy are based on capital preservation and market normalization. We
all know what capital preservation is, but some may not understand the concept
of market normalization. The ability to diversify equal amounts of capital
across a portfolio of different markets is the backbone of any money manage-
ment scheme. If we want to risk 5% of our equity on soybeans and 5% on
Treasury bonds, we need the ability to treat the two markets on apples to
apples basis. Most of the time one contract of Treasury bonds exhibits more
risk than one contract of soybeans. Since we want to maintain a constant
amount of capital to risk on the two markets, we will need to trade less Trea-
sury bonds and more soybeans. Let’s say the implied market risk for Treasury
bonds is $1000 and $500 for soybeans. If we were risking $2000 on each mar-
ket, we would then trade 2 contracts of bonds and 4 contracts of soybeans. We
are maintaining the same amount of risk by varying the number of contracts
for the two markets.

Measuring market risk is the first step in the market normalization
process. Money managers use several different measures to monitor market
risk: average true range, mean change in closing prices, standard deviation in
closing prices, and numerous others. The Money Manager strategy uses the
standard deviation in closing prices to calculate market risk.

Inputs: initCapital(100000),rskAmount(.02);
Vars: marketRisk(0),numContracts(0);

marketRisk = StdDev(Close,30) * BigPointValue;

The StdDev function returns the standard deviation in terms of points, so we
multiply by BigPointValue (dollar value of a big point move) to get market risk
in terms of dollars. Once we know the market risk, we then can calculate the
number of contracts.

Trading Strategies That Work 153

www.fx1618.com



numContracts = initCapital * rskAmount / marketRisk;

For demonstration purposes, let’s assume we are trading the Japanese Yen and
the market risk is equal to $750. The number of contracts would be calculated
by using the formula from above:

numContracts = 100000 * .02 /750
numContracts = 2000/750
numContracts = 2.66667

Since we can only trade with whole contracts, we round down to the nearest
whole number. Since market risk is the denominator in our formula, whenever
market risk increases the number of contracts decrease, hence, the risk aversion
component of our money management scheme. In similar fashion to the Ghost
Trader, the Money Manager was designed as more of a template than an actual
trading strategy. We wanted to provide the tools necessary to build a money
management platform. The source code for Money Manager follows.

The Money Manager Code

{The Money Manager}
{Demonstrates the programming and use of a money management scheme.}
{The user inputs initial capital and the amount he wants to risk on each
trade.}
Inputs: initCapital(100000),rskAmt(.02);
Vars: marketRisk(0),numContracts(0);
marketRisk = StdDev(Close,30) * BigPointValue;
numContracts = (initialCapital * rskAmt) / marketRisk;
value1 = Round(numContracts,0);
if(value1 > numContracts) then

numContracts = value1 - 1
else

numContracts = value1;
numContracts = MaxList(numContracts,1); {make sure at least 1 contract is

traded}

Buy("MMBuy") numContracts shares tomorrow at Highest(High,40) stop;
SellShort("MMSell") numContracts shares tomorrow at Lowest(Low,40) stop;

if(MarketPosition = 1) then Sell("LongLiq") next bar at Lowest(Low,20) stop;
if(MarketPosition =-1) then BuyToCover("ShortLiq") next bar at 

Highest(High,20) stop;

Overall the logic should be easy to follow. However, there is some code that
may not be totally intuitive. The formula that we used to determine the num-
ber of contracts doesn’t always produce a whole number. Since we are trading

154 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



stocks or futures, we can’t have a fractional number of contracts (shares). The
Round function was used to eliminate the fractional part. The Round function
requires two parameters: the value to be rounded and the level of precision.
The level of precision parameter relates to how many decimal places are to be
rounded to. If we had used one instead of zero, then the number of contracts
would have been rounded to the nearest tenth place. We used zero to round to
the nearest whole number. If we had passed two as the parameter, then the
function would round to the nearest 100th place. Since we developed a risk
averse money management model, the number of contracts should never be
rounded up (risk exposure is directly proportional to the number of contracts
that we are trading). EasyLanguage does not provide a truncation function (a
function that eliminates the fractional part of a number), so we used the fol-
lowing code to always round down:

value1 = Round(numContracts,0);
if(value1 > numContracts) then

numContracts = value1 - 1
else

numContracts = value1;

Value1 is assigned numContracts rounded to the nearest integer. If the round
function rounds up, then value1 will be greater than the numContracts vari-
able. If value1 is greater than numContracts, we simply subtract one from
value1 and reassign the difference to numContracts. If value1 is not greater
than numContracts, then the round function rounded down and we can sim-
ply reassign numContracts this value.

We introduced the keyword shares in the order placement logic.

Buy("MMBuy") numContracts shares tomorrow at Highest(High,40) stop;
SellShort("MMSell") numContracts shares tomorrow at Lowest(Low,40) stop;

The keyword shares must be used when trading a variable number of contracts
or shares. The number of shares (in the form of a variable name or a literal)
must follow the Buy/SellShort keyword and precede the keyword shares.

Buy("myBuy") 50 shares tomorrow at Open;

Or

Buy("myBuy") myNumShares shares tomorrow at Open;

You can use Money Manager as a platform to further research into other
money management schemes. You can get some great money management
ideas out of Nauzer J. Balsara’s, “Money Management Strategies for Futures
Traders”, published by John Wiley and Sons in 1992.

Trading Strategies That Work 155

www.fx1618.com



CONCLUSIONS

Serious programming was introduced as well as some robust trading system
principles: Bollinger Bands, Keltner Channels, Donchian Break Outs, Open
Range Break Outs, Day Trading, and the usage of multiple time frames, as well
as Ghost Trader and Money Manager Trading Strategies. Of course, these
aren’t the only trading principles available. There are many other existing prin-
ciples and some that have yet to be uncovered. The search for market princi-
ples is what keeps a system trader, researcher, and programmer excited about
what he is doing. Over the next few chapters, we will try and introduce a few
more morsels of research. The next chapter will focus on the art of debug-
ging—the ugly side of programming.

156 Building Winning Trading Systems with TradeStation

www.fx1618.com



157

7

Debugging and OutPut

Throughout this book, we have compared EasyLanguage to some of today’s
powerful programming languages. The power of the language is somewhat
diminished by the integrated development environment (IDE) in which it is
encapsulated. Today’s contemporary programming environments usually con-
sist of three elements: (1) editor, (2) compiler, and (3) in-line debugger.
TradeStation has two out of the three. Guess which one is missing. If you
guessed debugger then you are absolutely correct. You have already seen the
editor and compiler in action. If you are coming from a nonprogramming
background, this may not seem like a big deal. First off, let us explain what a
debugger is. A debugger is a program that allows a user to step through each
individual line of code and evaluate the program statements as they are exe-
cuted. Why on earth would you want to do this? you may ask. Unfortunately,
most programs don’t work properly the instant you finish typing them. Even
though your program may compile or verify, this doesn’t mean it will work in
the way you intended. Usually the most difficult part of the process of pro-
gramming starts after you have carefully typed your ideas into the PowerEditor
and verified your program. The Super Combo system that we programmed in
the last chapter required about an hour to pseudocode, an hour to type the pro-
gram in, and a couple of hours to debug. Even with careful planning and typ-
ing, we didn’t initially get the Super Combo to work in the manner that we
intended. The code that you saw in the last chapter was the result of trial and
error.

This chapter discusses topics associated with the process of fixing your
program code to accurately reflect your trading ideas. In addition, we will also
discuss the tools that can be used to create customized reports.

www.fx1618.com



LOGICAL VERSUS SYNTAX ERRORS

As you verify your analysis technique, TradeStation pauses to look for syntax
errors in your code. If there are any syntax errors, TradeStation opens up a dia-
log box explaining the error and places the cursor on the offending piece of
code. You can fix the error and then reverify and then move on to the next
error, if one exists. If you like to see more detailed information about your syn-
tax errors, then prior to verifying your code, open up the EasyLanguage out-
put bar and select the Verify tab. (You do this by going under the View menu
and selecting EasyLanguage Output Bar.) This window will tell you a descrip-
tion of the error, the analysis technique that caused it, the offending line num-
ber, and the type of error. We always verify with this window open. These
syntax errors are tedious and time-consuming, but are relatively easy to cor-
rect. We give a large list of the more popular syntax errors in Appendix A.

There are basically two types of errors in programming: syntax and logi-
cal. The logical errors are sometimes quite difficult to fix and are usually the
ones that instigate the violent action of throwing one’s monitor through the
closest open or shut window. A logical error is an imperfection in your trans-
lation of your ideas into programming code. This error may simply be a typo
or a complete misunderstanding of a concept. A typo is a simple fix, whereas a
flawed conception of an idea may take hours to work through. A debugger is
the most common cure for the logical error. Alas, we don’t have a built-in
debugger. Never fear, neither did the programming pioneers. We can get
around this obstacle with the use of cleverly placed print statements and the
Print Log. The Print Log can be accessed through the EasyLanguage Output
bar by selecting the Print Log tab.

DEBUGGING WITH THE PRINT STATEMENT
AND PRINT LOG

The Print Log and Print Statement aren’t perfect, but they should be an
acceptable substitute for a debugger. The following snippet of code has a log-
ical error; see if you can visually find it.

{Protective stop logic}
lonqLiqPoint = EntryPrice + 1.5*Range;
shortLiqPoint = EntryPrice + 1.5*Range;
if (MarketPosition = 1) then sell next bar at longLiqPoint stop;
if (MarketPosition) = -1) then buy to cover next bar at shortLiqPoint stop;

If you found the error, then let’s keep it to ourselves and continue on as if we
didn’t. If we had actually typed in this code, it would have verified with no
problems. The problems wouldn’t arise until we applied the logic to a chart

158 Building Winning Trading Systems with TradeStation

www.fx1618.com



and started to analyze the trades. After looking at the trades, you will notice
that there is something wrong with our long liquidation logic. Let’s push our
sleeves up and delve in and debug it by adding a few lines of code.

Vars: longLiqPoint(0),shortLiqPoint(0);
{System uses William's Percent R indicator to determine OB/OS situations}
if(percentR(14) crosses above 20) then buy next bar at

Highest(High,3) stop;
if(percentR(14) crosses below 80) then sellShort next bar at

Lowest(Low,3) stop;
longLiqPoint = EntryPrice + 1.5 * Range;
shortLiqPoint = EntryPrice + 1.5 * Range;
{Debugging Starts Here!}
if(MarketPosition = 1) then print(Date,EntryPrice,longLiqPoint);
{Debugging Ends Here!}
if(MarketPosition = 1) then sell next bar at longLiqPoint stop;
if(MarketPosition = -1) then buyToCover next bar at shortLiqPoint stop;

The Print Statement can print any variable out to the Print Log. Here we are
printing the current date, the entry price for our long position, and the liqui-
dation price. Once you verify the program with the new debugging code and
apply it to a Microsoft chart, the information will be output to the Print Log
and look like the information in Table 7.1.

Debugging and OutPut 159

Table 7.1
Print Log Output

1000808 71.13 78.17

1000829 72.13 74.93

1001019 58.44 64.72

1001212 58.75 63.63

1001226 47.13 51.15

1010104 48.88 54.31

1010226 58.06 61.9

1010323 56.13 60.06

1010522 70.14 71.96

1010621 69.59 72.04

1010827 62.28 64.96

1010925 52.61 56.87

1011130 65.08 66.81

1020103 68.85 72.09

1020201 64.5 67.54

1020409 57.33 61.28

Output from debug code.

www.fx1618.com



If you examine the information in the Print Log, you’ll notice something
wrong with our long liquidation stop; it’s above the entry price. We intended
this stop to be a protective stop and not a profit objective. This problem can be
fixed simply by changing the “+” to a “–” in the line of code that sets the
longLiqPoint.

We wish all logical errors were this simple. The problem is finding the
simple errors. If you have no idea where a logical error may be located, then
you basically have to print out the values of all of your variables on a bar-by-
bar basis. We have worked on programs where the number of Print Statements
outnumbered the actual program statements two to one. The larger and more
complex a program is, the more difficult and tedious the debugging will be.
This is yet another reason to program in a modular format. If you have a com-
plicated program that consists of several different modules, then program and
debug each module one at a time. Program and debug module A and then
move on to module B and so on. In doing so, if a logical error does creep into
your code, then you will know its relative location.

TABLE CREATOR

The following code demonstrates how we used Print Statements to locate our
logical errors and at the same time create a report. Before we go into the actual
code, let us first explain what the program is attempting to do. We thought it
would be interesting to do research on the relationship of the opening price
and closing price to different zone levels. We got the idea for this type of
research from Detecting High Profit Trades in the Futures Markets by J. T. Jack-
son, published in 1994 by Windsor Books. We cut today’s bar into four differ-
ent zones: Zone1 is anything greater than today’s high; Zone2 is anything less
than or equal to today’s high and greater than or equal to today’s midpoint;
Zone3 is anything less than today’s midpoint and greater than or equal to
today’s low; and Zone4 is anything less than today’s low. Our program will
count the number of times the market opens in the four zones and keep track
of the relationship between the opening and closing zones. In other words, we
are trying to find the probability of the market opening in Zone1 and closing
in Zone1, opening in Zone1 and closing in Zone2, and so on. In the end, the
program will generate a report that looks something like the following:

Close Zone1 Zone2 Zone3 Zone4
Open
Zone1 25% 18% 17% 40%
Zone2 — — — —
Zone3 — — — —
Zone4 — — — —

160 Building Winning Trading Systems with TradeStation

www.fx1618.com



{Table Creator by George Pruitt
We knew this program was going to be complicated, so we began with setting
up a debugging framework to start. This program isn't a simple strategy, but
instead a platform for research and analysis. We wanted to set up a
probability study based on the relationship between the opening and closing
prices and different zone levels.}

Vars: traceOn(FALSE),debugOn(FALSE),createReport(FALSE);
Vars: zone1(0),zone2(0),zone3(0);
Vars: inZone1(0),inZone2(0),inZone3(0),inZone4(0);
Vars: inZone1.outZone1(0),inZone1.outZone2(0),inZone1.outZone3(0),

inZone1.outZone4(0);
Vars: inZone2.outZone1(0),inZone2.outZone2(0),inZone2.outZone3(0),

inZone2.outZone4(0);
Vars: inZone3.outZone1(0),inZone3.outZone2(0),inZone3.outZone3(0),

inZone3.outZone4(0);
Vars: inZone4.outZone1(0),inZone4.outZone2(0),inZone4.outZone3(0),

inZone4.outZone4(0);
Vars: myBarCounter(0);
{Module 1 starts here!}

debugOn = TRUE; {This turns the flag on to print out various debug info}
traceOn = FALSE; {This turns the flag on to print out almost all statements}
createReport = TRUE; {Print the report to the print log}
{Start the analysis with the calculation of the different zones}

zone1 = High[1];
zone2 = High[1] + Low[1]/2.0;
zone3 = Low[1];
{Here we will print out the elements of our zone calculations to assist with
our debugging}
if(debugOn) then print(Date:8:0,High[1],Low[1],High[1] + Low[1]/2.0);
{If we turn trace on, then the program will dump a ton of information}
if(traceOn) then
begin

if(BarNumber = 1) then print("**Start Trace",Date:6:0," **");
print(" Zones for ",Date:8:0);
print(" Zone1 = ",zone1);
print(" Zone2 = ",zone2);
print(" Zone3 = ",zone3);

end;
{!!!! Module 1 ends here}
myBarCounter = myBarCounter + 1;

if(Open > zone1) then {This begins opening in Zone 1 Module}
begin
inZone1 = inZone1 + 1;
if(Close > zone1) then inZone1.outZone1 = inZone1.outZone1 + 1;

Debugging and OutPut 161

www.fx1618.com



if(Close <= zone1 and Close > zone2) then
inZone1.outZone2 = inZone1.outZone2 + 1;

if(Close <= zone2 and Close > zone3) then
inZone1.outZone3 = inZone1.outZone3 + 1;

if(Close <= zone3) then inZone1.outZone4 = inZone1.outZone4 + 1;
if(debugOn) then {Here we print the stats for an open in zone1}
begin

print("Open in Zone1 ",Date :6:0,zone1,Open,Close,inZone1,
inZone1.outZone1,inZone1.outZone2,inZone1.outZone3,
inZone1.outZone4);

end;
end; {This concludes opening in Zone1 Module}

At this point in the program, we would take a break from programming and
verify and apply the logic to a Microsoft chart. We would examine the output
in the Print Log to make sure that we had programmed everything accurately.
Table 7.2 shows the output of our initial programming.

Remember the statement:

if(debugOn) then print(Date :8:0,High[1],Low[1],High[1] + Low[1]/2.0);

We print out the date, high of yesterday, low of yesterday, and the midpoint of
yesterday (Zone1, Zone3, Zone2, respectively). Do you see something wrong
in the print out? It looks like Zone 2 is greater than Zone 1. Our debugging
already caught its first bug. Remember, Zone 2 is the area between and includ-
ing today’s midpoint and today’s high price. According to our print out, Zone
2 is above Zone 1. Let’s take a look at our Zone 2 calculation:

zone2 = High + Low/2.0;

What’s wrong with this? Argh! We don’t want this. We want the midpoint or
the average of today’s extreme prices:

zone2 = (High + Low)/2.0;

Remember the order of operations? Division is done first and the low is first
divided by 2.0 and then added to the high. We must use parentheses to get the
correct order. It was a good thing we caught this right off the bat, or it may
have caused several headaches down the road. Now back to the program. Let’s
program for the occurrence of the open between Zone 1 and Zone 2.

if(Open <= zone1 and Open >= zone2) then
begin

inZone2 = inZone2 + 1;
if(Close > zone1) then inZone2.outZone1 = inZone2.outZone1 + 1;
if(Close <= zone1 and Close > zone2) then

inZone2.outZone2 = inZone2.outZone2 + 1;

162 Building Winning Trading Systems with TradeStation

www.fx1618.com



Debugging and OutPut 163

Table 7.2
Debug Output

1020306 63.88 62.34 95.05

1020307 63.7 62.19 94.79

1020308 63.89 61.86 94.82

1020311 64.7 63.17 96.28

1020312 65 63 96.5

1020313 62.8 61.67 93.63

1020314 63.02 61.95 94

1020315 62.24 61.05 92.76

1020318 62.51 60.97 92.99

Open in Zone 1020318 62.51 62.74 62.14 40 23 0 38 2

1020319 62.99 61.2 93.59

1020320 63 61.5 93.75

1020321 62.02 60.1 92.07

1020322 61.6 59.83 91.51

1020325 61.14 60.22 91.25

1020326 60.78 59.15 90.35

1020327 60.92 58.31 90.07

1020328 59.88 58.59 89.18

Open in Zone 1020328 59.88 59.95 60.31 41 24 0 39 2

1020401 60.65 59.66 90.48

1020402 60.4 59.2 90

1020403 59.1 57.11 87.65

1020404 57.61 55.5 85.36

1020405 56.97 55.43 84.68

1020408 57.3 55.84 85.22

1020409 57.31 54.26 84.44

Open in Zone 1020409 57.31 57.33 54.87 42 24 0 40 2

1020410 57.43 54.8 84.83

1020411 57.11 55.06 84.64

1020412 56.45 54.5 83.7

1020415 56.26 54.86 83.69

1020416 56.77 55.4 84.47

1020417 58.1 56.36 86.28

1020418 58.28 56.42 86.49

Print out of Print Log from TableCreator program.

www.fx1618.com



if(Close <= zone2 and Close > zone3) then
inZone2.outZone3 = inZone2.outZone3 + 1;

if(Close <= zone3) then inZone2.outZone4 = inZone2.outZone4 + 1;
if(debugOn) then {Here we print the stats for an open in zone2}
begin

print("Open in Zone1", zone1Open, Close,inZone2, 
inZone2.outZone1,
inZone2.outZone2, inZone2.outZone3,inZone2.outZone4);

end;
end;
{!!!!! Module 2 ends here and Module 3 starts here}

For brevity’s sake, we will skip the other two zone calculations and move on to
creating the probability analysis table.

If(LastBarOnChart and createReport) then
begin

Print("Close "," Zone1 Zone2 Zone3 Zone4");
Print("-------------------------");
Print("Open |");
{How many times did we open in zone1 and close in zone1}
value1 = inZone1.outZone1/inZone1*100; {value1 is a temporary 

variable}
value2 = inZone1.outZone2/inZone1*100; {value2 is a temporary 

variable}
value3 = inZone1.outZone3/inZone1*100; {and so on}
value4 = inZone1.outZone4/inZone1*100;
Print("Zone1 | ",inZone1,value1:3:0,"% ", value2:3:0,"% ", 

value3:3:0,"% ", value4 :3:0,"%");
value1 = inZone2.outZone1/inZone2*100; {value1 is a temporary 

variable}
value2 = inZone2.outZone2/inZone2*100; {value2 is a temporary 

variable}
value3 = inZone2.outZone3/inZone2*100; {and so on}
value4 = inZone2.outZone4/inZone2*100;
Print("Zone2 | ",inZone3,value1:3:0,"% ", value2:3:0,"% ", 

value3:3:0,"% ", value4 :3:0,"%");

Again for brevity, we will skip the remaining portion of the report creation
code. Don’t worry, you will find the program in its entirety on the enclosed
CD-ROM. We are sure you will find the research quite interesting. We do
include the probability table of the S&P 500 at the end of this chapter; the
exact one generated by this code.

Remember when we said that the Super Combo strategy was the end
result of trial and error and a couple of hours of debugging? Take a look at a
portion of the code that dealt with setting the longLiqPoint with our debug
statements.

164 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



{The next module keeps track of positions and places protective stops}
if(MarketPosition = 1) then
begin

longLiqPoint = EntryPrice - protStopPrcnt1*averageRange;
print("1 Long",longLiqPoint,entryPrice);
longLiqPoint = MinList(longLiqPoint,EntryPrice - protStopAmt);
print("2",longLiqPoint);
if(MarketPosition(1) = -1 and BarsSinceEntry = 1 and

High[1] >= shortLiqPoint and shortLiqPoint < shortFBOPoint) 
then currTrdType = -2; {we just got long from a short liq
reversal}

if(currTrdType = -2) then
begin

longLiqPoint = EntryPrice - protStopPrcnt2*averageRange;
longLiqPoint = MinList(longLiqPoint,EntryPrice - protStopAmt);
print("3",longLiqPoint,currTrdType,barssinceentry(0));

end;
if(High >= EntryPrice + breakEvenPrcnt*averageRange) then

longLiqPoint = EntryPrice; {Break-even trade}
print("4",longLiqPoint);
if(Time >= initTradesEndTime) then {Trailing stop}

longLiqPoint = MaxList(longLiqPoint,Lowest(Low,3));
print("5",longLiqPoint);

if(Time < liqRevEndTime and sellsToday = 0 and
longLiqPoint <> EntryPrice) then

begin
SellShort("LongLiqRev") next bar at longLiqPoint stop;

end
else begin

Sell("LongLiq") next bar at longLiqPoint stop;
end;

end;

See how we printed the value of the protective stop each and every time it was
changed. We printed a different number for each condition that could change
the protective stop and the actual value of the protective stop. Even profes-
sional programmers have to debug. Heck, most of them use debugging as a
programming tool and not a fix. The truth of the matter is that most pro-
grammers (EasyLanguage or whatever language) do very little planning. They
start coding right off the bat. If they don’t know how a function works or the
correct keyword, they will output the results to a debugger to find out. In most
cases, they spend way too much time in front of the computer. We aren’t look-
ing down our noses at these programmers, because we do the same thing.
However, if you can learn the correct way and be disciplined enough, you can
considerably decrease debugging time and prevent your monitor from flying
out a window. Well, enough with the lecture.

Debugging and OutPut 165

www.fx1618.com



The Print Statement can be used to print out to a text file. The probabil-
ity table that we created could be printed to a file instead of the Print Log. To
do this, you would simply insert the name of the file into the existing Print
Statements:

Before:        Print(" Close "," Zone1 Zone2 Zone3 Zone4");
After:         Print("c:\MyFile"," Close "," Zone1 Zone2 Zone3 Zone4");

This Print Statement will print to MyFile on the C: drive. Each time you apply
your code with this Print Statement to a chart, MyFile will be deleted and
recreated and printed to. After the analysis technique is applied, the file can
then be opened with a word processor, emailed to others, copied to a disk,
or anything else you can do with a file. This is a powerful tool for creating
reports and analysis. Table 7.3 is a sample of the output that we created with
our CreateReport program.

CONCLUSIONS

Debugging is an essential part of programming. Without it, how would we fix
our logic and our programs? The Print Statement can be used to print out the
values of our variables to the Print Log or a file. You can also format the out-
put of the print statement like in the following:

myValue1 = 132.4444455;
Format                           Output
Print(myValue1 :4:2);            132.45
Print(myValue1 :4:0);            132
Print(myValue1 :4.1);            133.5

Printing to a file is as easy as printing to the print log:
Print("C:\myDataFile",myValue1);

166 Building Winning Trading Systems with TradeStation

Table 7.3
Zone Report

Close Zone1 Zone2 Zone3 Zone4

Open

Zone1 61% 23% 8% 8%

Zone2 33% 34% 19% 13%

Zone3 14% 24% 31% 31%

Zone4 9% 12% 21% 58%

Output of the Print Log that was created with TableCreator.

www.fx1618.com



This statement prints myValue1 to myDataFile on the C: drive. Each time a
new Print Statement is encountered a line feed is generated. So for every print
statement, you will have a line of output. The file is destroyed and recreated
every time a new bar is added to the chart, the program is verified, or the pro-
gram is applied to a new chart.

You will soon discover how helpful the Print Statement really is. Without
it, we don’t think there is any way you could become a productive EasyLan-
guage programmer. So far, our discussions have mostly revolved around pro-
gramming strategies. The next chapter shifts gears and we concentrate on the
research and analysis capabilities of EasyLanguage and TradeStation.

Debugging and OutPut 167

www.fx1618.com



168

8

TradeStation as a
Research Tool

Before you can create a trading strategy, you must develop and research a trad-
ing idea. A strategy starts out as an initial hunch, “What if I buy when the
market makes a new five-day high and the ADX is greater than 40?” The life
of this trading idea is either ended quickly or extended through research. If we
program an idea and test it and it fails miserably, then we usually file it in the
circular file. However, if the idea shows some potential, then we go on from
there. The next step is adding some other ideas to the core; “What if I force a
19 bar Stochastic reading to be in the oversold region in addition to a new five-
day high and the ADX reading is greater than 40?” This is usually how the
developmental cycle of a trading strategy works. In this chapter, we will show
how to use TradeStation, EasyLanguage, and optimization as tools for devel-
oping, researching, and testing trading ideas. These ideas may or may not
evolve into complete trading strategies. The ideas that we will expound upon
involve the use of external data, pattern recognition, and intermarket analysis.
We hope the ideas and programming that we present in this chapter will pro-
vide a sound foundation for you to build your research tools.

COMMITMENT OF TRADERS REPORT

Many of the trading strategies and ideas that we have tested over the past fif-
teen years solely relied on price data. However, there are trading ideas and
strategies that incorporate data outside of market prices. The next program-
ming project will demonstrate how to include external nonprice data in your

www.fx1618.com



testing. The Commodity Futures Trading Commission’s (CFTC) Commit-
ment of Traders report is an example of useful nonprice specific data. This
report summarizes the positions held by reporting and nonreporting traders. If
a trader’s position exceeds a certain level, it must be reported to the CFTC.
This reporting procedure prevents any one individual or group from control-
ling or cornering the market. The COT report subdivides the open interest (all
positions held) into commercial (hedgers) interest and speculative interest. The
commercial and speculative positions are then divided into long and short posi-
tions. This report was originally released on the 11th day of the month. Since
1992 it has been released on a biweekly basis. We thought it would be inter-
esting research to find out if the commercial interest had any insight in the
direction of the market. If the commercial positions were net bullish, we would
buy. If the commercial positions were net bearish, we would sell. Initially,
when we thought about this, we thought it would be an easy test. The idea was
easy enough, but the processing of the data and feeding it into TradeStation
wasn’t. The Commitment of Traders report can be accessed through the CFTC
website <www.cftc.gov>. The daily report looks like the one in Table 8.1.

As you can see, the report is easy enough for the human eye to read.
However, the computer can’t interpret all of this information without first
writing a sophisticated parsing program. Of all of the information that is pre-
sented in the report, we are only interested in the long and short positions held
by the commercials. So, we downloaded each report, extracted the necessary
information, and compiled it into a streamlined report (see Table 8.2).

After we compiled the information, the problem then was to get it into
TradeStation. Data importation is not a big deal in any version of TradeSta-
tion prior to 6.0. Those versions allowed the importation of third-party data.
You could create an ASCII file with date, open, high, low, and close fields
delimited by a space or a comma. Once you transformed your data into this
rather flexible format, you could simply insert the data into a chart and refer to
it in your EasyLanguage program in a similar fashion as we did with the Super
Combo system. One of the benefits of TradeStation 6.0 is also one of its
biggest drawbacks: a standardized single data provider. You are limited to the
type and amount of data that is provided by this one source. Don’t get us
wrong, we are very impressed with the amount of data that is provided. You
have access to stocks, futures, options, indices, and mutual funds. The infor-
mation that we are looking for, in this particular project, is somewhat unusual
and very customized. Unfortunately for TradeStation 6.0 users, the synthesis
of data and software in one complete package does not allow highly customiz-
able solutions. Earlier versions of TradeStation were much more open and
scalable. The current, not so open, platform makes this type of research very
difficult. However, as we did with our debugger, we can also overcome this
obstacle. Our solution is not a pretty one and requires a lot of elbow grease.

TradeStation as a Research Tool 169

www.fx1618.com



Ta
b

le
 8

.1
C

om
m

itt
m

en
t 

of
 T

ra
de

rs
Re

p
or

t

S
&
P
 
5
0
0
 
S
T
O
C
K
 
I
N
D
E
X
 
-
 
C
H
I
C
A
G
O
 
M
E
R
C
A
N
T
I
L
E
 
E
X
C
H
A
N
G
E

C
O
M
M
I
T
M
E
N
T
S
 
O
F
 
T
R
A
D
E
R
S
 
I
N
 
A
L
L
 
F
U
T
U
R
E
S
 
C
O
M
B
I
N
E
D
 
A
N
D
 
I
N
D
I
C
A
T
E
D
 
F
U
T
U
R
E
S
,
 
A
p
r
i
l
 
9
,
 
2
0
0
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:
 
 
T
O
T
A
L
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R
E
P
O
R
T
A
B
L
E
 
P
O
S
I
T
I
O
N
S
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

F
 
 
 
:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
:
 
N
O
N
R
E
P
O
R
T
A
B
L
E

U
 
 
 
:
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
N
O
N
-
C
O
M
M
E
R
C
I
A
L
 
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:
 
P
O
S
I
T
I
O
N
S

T
 
 
 
:
 
 
 
 
 
 
 
 
 
:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

U
 
 
 
:
 
 
 
O
P
E
N
 
 
:
 
 
 
L
O
N
G
 
O
R
 
S
H
O
R
T
:
 
L
O
N
G
 
A
N
D
 
S
H
O
R
T
:
 
C
O
M
M
E
R
C
I
A
L
 
 
 
 
:
 
 
 
 
 
T
O
T
A
L
 
 
 
 
 
:

R
 
 
 
:
 
I
N
T
E
R
E
S
T
:
 
 
 
 
 
 
 
O
N
L
Y
 
 
 
 
 
:
 
 
(
S
P
R
E
A
D
I
N
G
)
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

E
 
 
 
:
 
 
 
 
 
 
 
 
 
:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
 
 
 
:
 
 
 
 
 
 
 
 
 
:
 
 
 
 
L
O
N
G
 
:
 
S
H
O
R
T
:
 
 
 
L
O
N
G
 
:
 
S
H
O
R
T
:
 
 
 
L
O
N
G
 
:
 
S
H
O
R
T
:
 
 
 
L
O
N
G
 
:
 
S
H
O
R
T
:
 
 
 
 
L
O
N
G
 
:
 
S
H
O
R
T

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:
 
 
 
 
 
 
 
 
 
:
(
S
&
P
 
5
0
0
 
I
N
D
E
X
 
X
 
$
2
5
0
.
0
0
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

:
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

A
L
L
 
 
 
:
 
 
5
0
5
,
8
1
3
:
 
 
3
0
,
1
7
6
 
 
4
2
,
7
6
1
 
 
 
4
,
2
9
9
 
 
 
4
,
2
9
9
 
3
2
0
,
1
0
1
 
4
1
1
,
0
7
5
 
3
5
4
,
5
7
6
 
4
5
8
,
1
3
5
:
 
1
5
1
,
2
3
7
 
 
4
7
,
6
7
8

O
L
D
 
 
 
:
 
 
5
0
5
,
8
1
3
:
 
 
3
0
,
1
7
6
 
 
4
2
,
7
6
1
 
 
 
4
,
2
9
9
 
 
 
4
,
2
9
9
 
3
2
0
,
1
0
1
 
4
1
1
,
0
7
5
 
3
5
4
,
5
7
6
 
4
5
8
,
1
3
5
:
 
1
5
1
,
2
3
7
 
 
4
7
,
6
7
8

O
T
H
E
R
 
:
 
 
 
 
 
 
 
 
0
:
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
:
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0

:
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

:
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
C
H
A
N
G
E
S
 
I
N
 
C
O
M
M
I
T
M
E
N
T
S
 
F
R
O
M
 
A
p
r
i
l
 
2
,
 
2
0
0
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

A
L
L
 
 
 
:
 
 
 
 
9
,
7
9
0
:
 
 
 
 
 
9
0
5
 
 
 
 
 
2
2
3
 
 
 
 
 
2
9
0
 
 
 
 
 
2
9
0
 
 
 
6
,
8
0
7
 
 
 
4
,
7
3
8
 
 
 
8
,
0
0
2
 
 
 
5
,
2
5
1
:
 
 
 
1
,
7
8
8
 
 
 
4
,
5
3
9

:
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

:
 
 
 
 
 
 
 
 
 
:
P
E
R
C
E
N
T
 
O
F
 
O
P
E
N
 
I
N
T
E
R
E
S
T
 
R
E
P
R
E
S
E
N
T
E
D
 
B
Y
 
E
A
C
H
 
C
A
T
E
G
O
R
Y
 
O
F
 
T
R
A
D
E
R
S
:

A
L
L
 
 
 
:
 
 
1
0
0
.
0
%
 
:
 
 
 
 
 
6
.
0
 
 
 
 
 
8
.
5
 
 
 
 
 
0
.
8
 
 
 
 
 
0
.
8
 
 
 
 
6
3
.
3
 
 
 
 
8
1
.
3
 
 
 
 
7
0
.
1
 
 
 
 
9
0
.
6
:
 
 
 
 
2
9
.
9
 
 
 
 
 
9
.
4

O
L
D
 
 
 
:
 
 
1
0
0
.
0
%
 
:
 
 
 
 
 
6
.
0
 
 
 
 
 
8
.
5
 
 
 
 
 
0
.
8
 
 
 
 
 
0
.
8
 
 
 
 
6
3
.
3
 
 
 
 
8
1
.
3
 
 
 
 
7
0
.
1
 
 
 
 
9
0
.
6
:
 
 
 
 
2
9
.
9
 
 
 
 
 
9
.
4

O
T
H
E
R
 
:
 
 
1
0
0
.
0
%
 
:
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0
:
 
 
 
 
 
0
.
0
 
 
 
 
 
0
.
0

:
-
-
-
-
-
-
-
-
-
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

170www.fx1618.com



:
N
U
M
B
E
R
 
O
F
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

:
T
R
A
D
E
R
S
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N
U
M
B
E
R
 
O
F
 
T
R
A
D
E
R
S
 
I
N
 
E
A
C
H
 
C
A
T
E
G
O
R
Y
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

:
-
-
-
-
-
-
-
-
-
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:

A
L
L
 
 
 
:
 
 
 
 
1
3
8
 
 
:
 
 
 
 
 
 
1
8
 
 
 
 
 
 
1
9
 
 
 
 
 
 
1
0
 
 
 
 
 
 
1
0
 
 
 
 
 
 
8
0
 
 
 
 
 
 
5
9
 
 
 
 
 
1
0
6
 
 
 
 
 
 
8
0
:

O
L
D
 
 
 
:
 
 
 
 
1
3
8
 
 
:
 
 
 
 
 
 
1
8
 
 
 
 
 
 
1
9
 
 
 
 
 
 
1
0
 
 
 
 
 
 
1
0
 
 
 
 
 
 
8
0
 
 
 
 
 
 
5
9
 
 
 
 
 
1
0
6
 
 
 
 
 
 
8
0
:

O
T
H
E
R
 
:
 
 
 
 
 
 
0
 
 
:
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
0
:

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C
O
N
C
E
N
T
R
A
T
I
O
N
 
R
A
T
I
O
S

:
 
 
 
 
 
 
 
 
 
P
E
R
C
E
N
T
 
O
F
 
O
P
E
N
 
I
N
T
E
R
E
S
T
 
H
E
L
D
 
B
Y
 
T
H
E
 
I
N
D
I
C
A
T
E
D
 
N
U
M
B
E
R
 
O
F
 
L
A
R
G
E
S
T
 
T
R
A
D
E
R
S

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B
Y
 
G
R
O
S
S
 
P
O
S
I
T
I
O
N
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B
Y
 
N
E
T
 
P
O
S
I
T
I
O
N

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:
 
 
 
4
 
O
R
 
L
E
S
S
 
T
R
A
D
E
R
S
 
 
 
:
 
 
8
 
O
R
 
L
E
S
S
 
T
R
A
D
E
R
S
 
 
 
:
 
 
4
 
O
R
 
L
E
S
S
 
T
R
A
D
E
R
S
 
 
:
 
 
8
 
O
R
 
L
E
S
S
 
T
R
A
D
E
R
S

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:
 
 
 
 
L
O
N
G
 
 
 
:
 
 
 
S
H
O
R
T
 
 
 
:
 
 
 
L
O
N
G
 
 
 
:
 
 
S
H
O
R
T
 
 
 
 
:
 
 
L
O
N
G
 
 
 
:
 
 
 
S
H
O
R
T
 
 
 
:
 
 
L
O
N
G
 
 
 
:
 
 
 
 
S
H
O
R
T

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

A
L
L
 
 
 
:
 
 
 
 
2
1
.
6
 
 
 
 
 
 
 
 
3
1
.
6
 
 
 
 
 
 
 
 
 
3
0
 
 
 
 
 
 
 
4
5
.
4
 
 
 
 
 
 
 
2
1
.
3
 
 
 
 
 
 
 
 
3
0
.
8
 
 
 
 
 
 
2
9
.
5
 
 
 
 
 
 
 
 
 
4
4
.
5

O
L
D
 
 
 
:
 
 
 
 
2
1
.
6
 
 
 
 
 
 
 
 
3
1
.
6
 
 
 
 
 
 
 
3
0
.
2
 
 
 
 
 
 
 
4
5
.
4
 
 
 
 
 
 
 
2
1
.
3
 
 
 
 
 
 
 
 
3
0
.
8
 
 
 
 
 
 
2
9
.
5
 
 
 
 
 
 
 
 
 
4
4
.
5

O
T
H
E
R
 
:
 
 
 
 
 
0
.
0
 
 
 
 
 
 
 
 
 
0
.
0
 
 
 
 
 
 
 
 
0
.
0
 
 
 
 
 
 
 
 
0
.
0
 
 
 
 
 
 
 
 
0
.
0
 
 
 
 
 
 
 
 
 
0
.
0
 
 
 
 
 
 
 
0
.
0
 
 
 
 
 
 
 
 
 
 
0
.
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

171www.fx1618.com



The perfect solution would be the ability to import data from a text file as was
available on previous versions of TradeStation. Since we don’t have this luxury,
we will type the data that we need into array data structures. Remember, arrays
are lists of similar data that can be accessed with an index variable. In this pro-
gram, we will use three parallel arrays. We hope this doesn’t sound too com-
puter geeky. This research project doesn’t require any sophisticated array
manipulations. Maybe we should use the word table instead of parallel arrays.
Our table will look something like:

172 Building Winning Trading Systems with TradeStation

Table 8.2
Simplified Version of the Committment of Traders Report

Date Bulls Bears

19860115 29116 29119

19860131 31665 27329

19860214 37974 32357

19860228 42672 41513

19860314 44976 60318

19860331 31899 48075

19860415 29808 38246

19860430 28780 38111

19860515 52436 43043

19860530 53255 49183

19860613 55666 46562

19860630 45747 46670

19860715 57792 52414

19860731 63517 62979

19860815 54968 50903

19860829 58622 52918

19860915 75942 84017

19860930 90072 73655

19861015 96932 77658

19861031 98417 82308

19861114 100415 72907

19861128 90516 76338

19861215 74731 72098

19861231 58122 57665

19870115 67508 50323

www.fx1618.com



Date Commercial Bulls Commercial Bears
20011016 378866 415289
20011023 377177 413658
20011030 377468 413729
20011106 376807 416063
20011113 381539 421284
20011120 369784 415822
20011127 371336 421405
20011204 360315 420919
20011211 367397 429640
20011218 391995 456968
20011221 412581 471239

We will set up three individual arrays named cotDateArray, cotBullsArray,
and cotBearsArray and assign corresponding data to each. Each element of
each array will be linked by a single index variable. Element one in the cot-
DateArray will correspond with element one in the cotBullsArray and cot-
BearsArray arrays. Element one in the cotDateArray will not correspond with
element two in the other arrays. To extract accurate data, you must span the
arrays with the exact same index variable. You would access the first line of data
in our table by using the following syntax:

myDate = cotDateArray[0];
myBulls = cotBullsArray[0];
myBears = cotBearsArray[0];

In the case of our arrays, the zero element in the cotDateArray is 20011016, in
the cotBullsArray it is 378866, and in the cotBearsArray it is 415289. Can you
see why we refer to these arrays as parallel? The next snippet of code shows
how to declare, initialize and assign the three arrays.

Vars: barDelay(0),arrayIndex(0),bullPos(0),bearPos(0),iCount(0);
Arrays: cotDateArray[1000](0),cotBullsArray[1000](0),cotBearsArray[1000](0);

cotDateArray[ 0] = 19860115;cotBullsArray[ 0] = 29116; cotBearsArray[ 0] = 29119;

cotDateArray[ 1] = 19860131;cotBullsArray[ 1] = 31665; cotBearsArray[ 1] = 27329;

cotDateArray[ 2] = 19860214;cotBullsArray[ 2] = 37974; cotBearsArray[ 2] = 32357;

cotDateArray[ 3] = 19860228;cotBullsArray[ 3] = 42672; cotBearsArray[ 3] = 41513;

cotDateArray[ 4] = 19860314;cotBullsArray[ 4] = 44976; cotBearsArray[ 4] = 60318;

cotDateArray[ 5] = 19860331;cotBullsArray[ 5] = 31899; cotBearsArray[ 5] = 48075;

cotDateArray[ 6] = 19860415;cotBullsArray[ 6] = 29808; cotBearsArray[ 6] = 38246;

TradeStation as a Research Tool 173

www.fx1618.com



cotDateArray[ 7] = 19860430;cotBullsArray[ 7] = 28780; cotBearsArray[ 7] = 38111;

cotDateArray[ 8] = 19860515;cotBullsArray[ 8] = 52436; cotBearsArray[ 8] = 43043;

cotDateArray[ 9] = 19860530;cotBullsArray[ 9] = 53255; cotBearsArray[ 9] = 49183;

cotDateArray[ 10] = 19860613;cotBullsArray[ 10] = 55666; cotBearsArray[ 10] = 46562;

This type of programming is known as “grunt programming.” It doesn’t
require eloquence, just redundant brute force. Concerning the Commitment of
Traders report, we have done the work for you in a number of different mar-
kets. You can access the data from the enclosed CD-ROM and test for your-
self the prophetic nature of the commercial interests. The first two letters of
the file name represents the commodity symbol. You would then create a strat-
egy and copy and paste the data into the EasyLanguage strategy. The follow-
ing program demonstrates how to use the data in an actual trading strategy.
We will skip over the arrays assignments.

if(barNumber = 1) then
begin

value3 = cotDateArray[arrayIndex]-19000000;{Puts date into 
TradeStation format}

value4 = Date;
{If your bar chart starts after the first date of COT data then loop 

until we get pertinent COT data.}
for iCount = 1 to 643
begin

value3 = cotDateArray[arrayIndex]-19000000;
if(value3 < value4) then arrayIndex = arrayIndex + 1

end;
end;
{At this point our bar chart should be either before or equal to the start of
the COT data}
value1 = cotDateArray[arrayIndex]-19000000;
value2 = Date;
if(value2[1] < value1 and value2 >= value1) then {Today's date equals a COT 

date}
begin

{Start the delay—since the date of the COT report doesn't mark when 
the information is released for public consumption.}

barDelay = 1;
bearPos = cotBearsArray[arrayIndex];
bullPos = cotBullsArray[arrayIndex];
arrayIndex = arrayIndex + 1;

end;
if(value2 < value1 and barDelay = 3)then
begin

if(bullPos > bearPos) then    {if the bulls = bears no new action}
begin

174 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



buy tomorrow at Open;
end;
if(bullPos < bearPos) then {if the bears = bulls no new action}
begin

sell short tomorrow at Open;
end;

end;
barDelay = barDelay + 1;

Again, this code may look daunting and confusing, but it really isn’t. Basically,
we are trying to align the dates of our bar chart with the dates of the COT
report. If our bar chart starts after the first date of our COT data, then we must
spin through the arrays until the COT date is equal to the start of our bar
chart. If our bar chart starts before the start of our COT date, then we must
spin through the bar chart until it is equal to the beginning of the COT data.
The results from deriving our trades from the Commitment of Traders report are
shown in Table 8.3.

Well, in the case of the S&P500, it looks like the commercial traders
know what they are doing. Is this the case for other markets? We will let you
figure that out. Again, the data is located on the companion CD-ROM.

TradeStation as a Research Tool 175

Table 8.3
CotTrader Strategy Performance

Performance Summary: All Trades

Total Net Profit 297,567.50 Open position P/L 93,525.00

Gross Profit 399,442.50 Gross Loss (101,875.00)

Total # of trades 68 Percent profitable 64.71%

Number winning trades 44 Number losing trades 24

Largest winning trade 44,562.50 Largest losing trade (17,375.00)

Average winning trade 9,078.24 Average losing trade (4,244.79)

Ratio avg win/avg loss 2.13868 Avg trade (win & loss) 4,375.99

Max consec. Winners 6 Max consec. losers 4

Avg # bars in winners 73 Avg # bars in losers 18

Max intraday drawdown (52,050.00)

Profit Factor 3.92091 Max # contracts held 1

Account size required 52,050.00 Return on account 571.70%

www.fx1618.com



DAY OF WEEK ANALYSIS

Many studies have been done on buying/selling on different days of the week
to enhance profitability. I know of a number of market technicians that are
firm believers in a day of the week for taking market action. A series of studies
has been done with the objective of determining if buying or selling on differ-
ent days of the week gives a trading edge. There are a number of different ways
to look at this. Some are:

• Open to close on the same day
• Close to close from one day to the next
• Volatility of markets for different days of the week

One could introduce a variable stop for different days of the week depending
on the volatility. This is a computer exercise to determine the best set of vari-
ables to produce the best possible return on past market action. This is known
as curve-fitting or perhaps super curve-fitting. One must ask the question
whether this will bear any relationship to future market action. It reminds us of
the infomercial on late night television where computer studies were made on
seasonality of all markets. Such studies would show that one buys say Swiss
Franc on one day of the year and sells on another computer-optimized day for
accuracies of 80 percent. Anyone who believes ideas such as this simply does
not understand the forces of supply and demand. This is a computer-generated
study that can produce any desired return one wants on past market data. The
proponents of day of week trading say that people are more inclined to buy or
sell on one day of the week versus another or their particular pattern works
better. It has nothing to do with supply and demand characteristics. Is such an
approach reliable or pure hogwash? We will let you decide, using the tables in
the next section that show the results of our day of week analysis using Easy-
Language code to generate the test results.

Open to Close and Open to Open 
Relationships

Our first tests will analyze the Open to Close relationship on the various days
of the week. The following code illustrates the code for buying or selling on
the open on the different days of the week and liquidating the position on the
close. We are using an Input statement so that we can test buys and sells across
the different weekdays in one optimization run. This test will show if certain
days have a bullish or bearish bias. We will test the Dow Jones, S&P500, NAS-
DAQ, and U.S. Bonds.

176 Building Winning Trading Systems with TradeStation

www.fx1618.com



Inputs: buyOrSell(1),whichDay(1);
{buyOrSell: 1 = buy 2 = sell whichDay : 1 is Monday 2 is Tuesday etc . . .}
if(DayOfWeek(Date of Tomorrow) = whichDay) then
begin

if(buyOrSell = 1) then
buy("Buy On Open") at next bar at Open;

if(buyOrSell = 2) then
sellShort("Sell On Open") at next bar at Open;

end;

SetExitOnClose;

You will have to set up an optimization run and vary the buyOrSell input from
1 to 2 and vary the whichDay input from 1 to 5 with increment values of 1. We
are using TradeStation’s optimization capabilities in a somewhat different
manner than we have discussed thus far in the book. We really aren’t trying to
optimize a certain parameter. We simply want TradeStation to batch process
the same program over different parameters. In other words, we aren’t opti-
mizing, we are batch processing. If buyOrSell is equal to 1, then the system will
only buy. If this input is 2, then the system will only sell. The whichDay input
determines which day the trade takes place. If whichDay is 1, then the trade
takes place on Monday and so on. Table 8.4 shows the results of buying and
selling on the various days of the week. We thought it would be of interest to
break the test into two time periods: 1982 (or whenever the market started)
through March 2000, and April 2000 through April 2002. The first test period
covers the majority of a bull market and the second time period covers the cur-
rent bear market. Tables 8.4 and 8.5 show the results of trading on the differ-
ent weekdays over the two time periods.

Tables 8.6 and 8.7 show the results of almost the same test as Tables 8.4
and 8.5. The only thing different in this test is the positions were held
overnight and liquidated on the next morning’s open.

DAY OF WEEK VOLATILITY ANALYSIS

Is there a particular day of the week that shows more volatility on a consistent
basis? Let’s find out. This test was conducted by first measuring the 30-
day volatility up to the week we were analyzing and then comparing the daily
volatility against this measurement. We summed up the quotient of the true
range of each weekday divided by the average true range of the past 30 days mea-
sured at the close of the previous Friday (TrueRange/AverageTrueRange(30))
and then divided by the number of occurrences of each weekday. Since we aren’t
analyzing profits or losses, we will rely on the Print Log to print out our findings.
In this test, volatility is defined as the average true range for the past 30 days.

TradeStation as a Research Tool 177

www.fx1618.com



178

Ta
b

le
 8

.4
D

ay
 o

f W
ee

k 
A

na
ly

si
s 

1—
Ta

bl
e 

1

D
ay

 o
f 

W
ee

k 
A

n
al

ys
is

B
uy

/S
el

l o
n

 t
h

e 
O

p
en

 a
n

d
 L

iq
ui

d
at

e 
o

n
 t

h
e 

C
lo

se

Pr
io

r 
to

 A
p

ri
l 2

00
0

D
o

w
 Jo

n
es

N
A

SD
A

Q
S&

P5
00

U
.S

.B
o

n
d

s

D
ay

 o
f 

W
ee

k
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll

M
on

da
y

$8
,1

10
–$

8,
11

0
–$

5,
91

5
$5

,9
15

$4
5,

91
3

–$
45

,9
13

$1
,6

25
–$

1,
62

5

Tu
es

da
y

–$
18

,1
30

$1
8,

13
0

–$
53

,9
20

$5
3,

92
0

$1
,0

63
–$

1,
06

3
$5

0,
03

1
–$

50
,0

31

W
ed

ne
sd

ay
$9

,9
60

–$
9,

96
0

$3
6,

14
0

–$
36

,1
40

$7
5,

80
0

–$
75

,8
00

–$
35

,5
00

$3
5,

50
0

Th
ur

sd
ay

–$
1,

03
0

$1
,0

30
$2

6,
45

0
–$

26
,4

50
$2

9,
61

3
–$

29
,6

13
$1

,8
44

–$
1,

84
4

Fr
id

ay
$4

,9
20

–$
4,

92
0

$3
3,

32
5

–$
33

,3
25

–$
4,

19
8

$4
,1

98
$4

,0
31

–$
4,

03
2

To
ta

l
$3

,8
30

–$
3,

83
0

$3
6,

08
0

–$
36

,0
80

$1
48

,1
90

–$
14

8,
19

0
$2

2,
03

1
–$

22
,0

32

www.fx1618.com



179

Ta
b

le
 8

.5
D

ay
 o

f W
ee

k 
A

na
ly

si
s 

1—
Ta

bl
e 

2

D
ay

 o
f 

W
ee

k 
A

n
al

ys
is

B
uy

/S
el

l o
n

 t
h

e 
O

p
en

 a
n

d
 L

iq
ui

d
at

e 
o

n
 t

h
e 

C
lo

se

A
ft

er
 M

ar
ch

 2
00

0
D

o
w

 Jo
n

es
N

A
SD

A
Q

S&
P5

00
U

.S
.B

o
n

d
s

D
ay

 o
f 

W
ee

k
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll

M
on

da
y

$1
3,

07
0

–$
13

,0
70

–$
40

,5
00

$4
0,

50
0

$2
0,

72
5

–$
20

,7
25

$7
,0

63
–$

7,
06

3

Tu
es

da
y

$2
,7

90
–$

2,
79

0
–$

15
3,

30
0

$1
53

,3
00

–$
32

,9
50

$3
2,

95
0

$7
,9

69
–$

7,
96

9

W
ed

ne
sd

ay
–$

1,
83

0
$1

,8
30

–$
53

,3
00

$5
3,

30
0

–$
36

,6
12

$3
6,

61
2

$2
,7

81
–$

2,
78

1

Th
ur

sd
ay

$4
,6

90
–$

4,
69

0
$5

8,
35

0
–$

58
,3

50
$2

2,
65

0
–$

22
,6

50
$2

,3
75

–$
2,

37
5

Fr
id

ay
–$

6,
20

0
$6

,2
00

–$
85

,7
00

$8
5,

70
0

–$
17

,1
75

$1
7,

17
5

–$
8,

78
1

$8
,7

81

To
ta

l
$1

2,
52

0
–$

12
,5

20
–$

27
4,

45
0

$2
74

,4
50

–$
43

,3
62

$4
3,

36
2

$1
1,

40
6

–$
11

,4
07

www.fx1618.com



180

Ta
b

le
 8

.6
D

ay
 o

f W
ee

k 
A

na
ly

si
s 

2—
Ta

bl
e 

1

D
ay

 o
f 

W
ee

k 
A

n
al

ys
is

B
uy

/S
el

l o
n

 t
h

e 
O

p
en

 a
n

d
 L

iq
ui

d
at

e 
o

n
 t

h
e 

C
lo

se

Pr
io

r 
to

 A
p

ri
l 2

00
0

D
o

w
 Jo

n
es

N
A

SD
A

Q
S&

P5
00

U
.S

.B
o

n
d

s

D
ay

 o
f 

W
ee

k
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll

M
on

da
y

$8
,1

10
–$

8,
11

0
–$

5,
91

5
$5

,9
15

$4
5,

91
3

–$
45

,9
13

$1
,6

25
–$

1,
62

5

Tu
es

da
y

–$
18

,1
30

$1
8,

13
0

–$
53

,9
20

$5
3,

92
0

$1
,0

63
–$

1,
06

3
$5

0,
03

1
–$

50
,0

31

W
ed

ne
sd

ay
$9

,9
60

–$
9,

96
0

$3
6,

14
0

–$
36

,1
40

$7
5,

80
0

–$
75

,8
00

–$
35

,5
00

$3
5,

50
0

Th
ur

sd
ay

–$
1,

03
0

$1
,0

30
$2

6,
45

0
–$

26
,4

50
$2

9,
61

3
–$

29
,6

13
$1

,8
44

–$
1,

84
4

Fr
id

ay
$4

,9
20

–$
4,

92
0

$3
3,

32
5

–$
33

,3
25

–$
4,

19
8

$4
,1

98
$4

,0
31

–$
4,

03
2

To
ta

l
$3

,8
30

–$
3,

83
0

$3
6,

08
0

–$
36

,0
80

$1
48

,1
90

–$
14

8,
19

0
$2

2,
03

1
–$

22
,0

32

www.fx1618.com



181

Ta
b

le
 8

.7
D

ay
 o

f W
ee

k 
A

na
ly

si
s 

2—
Ta

bl
e 

2

D
ay

 o
f 

W
ee

k 
A

n
al

ys
is

B
uy

/S
el

l o
n

 t
h

e 
O

p
en

 a
n

d
 L

iq
ui

d
at

e 
o

n
 t

h
e 

C
lo

se

A
ft

er
 M

ar
ch

 2
00

0
D

o
w

 Jo
n

es
N

A
SD

A
Q

S&
P5

00
U

.S
.B

o
n

d
s

D
ay

 o
f 

W
ee

k
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll
B

uy
Se

ll

M
on

da
y

$3
,1

80
–$

3,
18

0
–$

6,
60

0
$6

,6
00

$1
7,

30
0

–$
17

,3
00

$2
,7

50
–$

2,
75

0

Tu
es

da
y

–$
9,

07
0

$9
,0

70
–$

19
4,

05
0

$1
94

,0
50

–$
69

,8
62

$6
9,

86
2

$8
,7

50
–$

8,
75

0

W
ed

ne
sd

ay
–$

58
0

$5
80

–$
23

,8
50

$2
3,

85
0

–$
32

,9
37

$3
2,

93
7

$5
,4

37
–$

5,
43

7

Th
ur

sd
ay

–$
2,

48
0

$2
,4

80
$3

6,
90

0
–$

36
,9

00
–$

13
,6

50
$1

3,
65

0
$2

,7
81

–$
2,

78
1

Fr
id

ay
–$

4,
10

0
$4

,1
00

–$
71

,2
00

$7
1,

20
0

–$
11

,1
25

$1
1,

12
5

–$
12

,8
75

$1
2,

87
5

To
ta

l
–$

13
,0

50
$1

3,
05

0
–$

25
8,

80
0

$2
58

,8
00

–$
11

0,
27

4
$1

10
,2

74
$6

,8
43

–$
6,

84
3

www.fx1618.com



Vars: volMeasure(1),count(0),dayName("Monday");
Arrays: binArray[5](0),dayCntArray[5](0);
{binArray will keep track of the daily ATR ratios
binArray[0] = Monday
binArray[1] = Tuesday
binArray[2] = Wednesday
binArray[3] = Thursday
binArray[4] = Friday → Remember, arrays are zero based in EasyLanguage}
if(DayOfWeek(Date) = Monday) then volMeasure = AvgTrueRange(30)[1];
{The DayOfWeek function returns 1-5 for Monday-Friday.
We subtract a 1 from whatever the function returns to make the arrays zero
based. If today is Monday, then DayOfWeek returns a 1. We then subtract 1
from that and use it as the index into our arrays. Mondays will be stored in
the zero element.}
binArray[DayOfWeek(Date)-1] = binArray[DayOfWeek(Date)-1] +
AvgTrueRange(1)/volMeasure;
dayCntArray[DayOfWeek(Date)-1] = dayCntArray[DayOfWeek(Date)-1] + 1;
if(lastBarOnChart) then
begin

Print(SymbolName,Date:6:0,"Day of Week Volatility Study");
for count = 0 to 4
begin

if(count = 0) then dayName = "Monday";
if(count = 1) then dayName = "Tuesday";
if(count = 2) then dayName = "Wednesday";
if(count = 3) then dayName = "Thursday";
if(count = 4) then dayName = "Friday";
Print(dayName,binArray[count]/dayCntArray[count]);

end;
end;

As you can see from the code, we aren’t utilizing inputs and, therefore, aren’t
utilizing optimization. In this test, we don’t need to inform the program on
which day to take action or to buy or sell; we are monitoring all days simulta-
neously regardless of buying or selling. Table 8.8 shows the results from our
testing.

All of these tests are interesting and the programming behind them may
offer some educational benefit, but can we really use the information? If one
really believes that this is a valid analysis, then one can curve-fit their strategy
for different entries and exits on each day of the week depending on historical
analysis. We guess our attitude is that you shouldn’t fool yourself by buying
such curve-fitting at face value. What we mean is, don’t get carried away with
any historic analysis and/or back testing. Overall, we personally find it difficult
to draw firm conclusions from the tests. We do track systems that use this type
of analysis in the Futures Truth magazine. In real-time, walk-forward testing,
these systems have not demonstrated any better performance than systems that

182 Building Winning Trading Systems with TradeStation

www.fx1618.com



do not use this form of analysis. Again, here are the numbers. Draw your own
conclusions and we welcome your comments.

TIME OF DAY ANALYSIS

Time of day analysis is more utilized by day traders; if you are only executing
trades on a monthly basis, then you really don’t care what time of the day you
entered the trade. Day traders enter and exit the market on the same day.
Many of these traders feel that time plays an important part in the success of a
trade. Many people would agree that waiting until after the first 30 minutes
of trading on the stock indices will prevent whipsaws. The first 30 minutes of
trading is usually heavily laden with news and consists of high volatility and
indirection. Other traders believe that the true trend of the day is not estab-
lished until after lunch. We have heard from many brokers and traders that
early trading is for the amateurs and late trading is for the pros. We thought we
would put these hypotheses to the test. In this time of day analysis, we tested
entering the S&P500 futures markets at various times. The test starts out by
buying the open and liquidating on the close. Each subsequent test waits an

TradeStation as a Research Tool 183

Table 8.8
Day of Week Volatility Study

Day of Week Analysis
Daily True Ranges as a Percentage of 30-Day Avg. True Range

Before April 2000 U.S. Bonds NASDAQ Dow Jones S&P

Day of Week

Monday 88% 101% 96% 97%

Tuesday 99% 118% 198% 108%

Wednesday 94% 105% 188% 101%

Thursday 99% 116% 239% 100%

Friday 124% 114% 374% 110%

Day of Week Analysis
Daily True Ranges as a Percentage of 30-Day Avg. True Range

After March 2000 U.S. Bonds NASDAQ Dow Jones S&P

Day of Week

Monday 71% 84% 93% 89%

Tuesday 95% 95% 95% 95%

Wednesday 107% 259% 268% 129%

Thursday 110% 241% 298% 114%

Friday 119% 174% 365% 131%

www.fx1618.com



additional 15 minutes before a trade is entered. We still exit market on close
and do not incorporate any form of protective or profit objective stops. In addi-
tion to keeping track of profits or losses, we also keep track of the average
excursion for each test. After we completed testing long trades, we then tested
the short side of the market. We were able to accomplish this analysis by using
TradeStation’s optimization capabilities and the following programming code:

Inputs: buyOrSell(1),barDelay(0);
Vars: barCount(0),delayval(0),excursionVal(0),totalExcursionVal(0),

trdCount(0), posString("Long");
{Test using 5-minute bars}

if(BarNumber > 1 and date <> date[1]) then begin
if(excursionVal < 0) then totalExcursionVal = totalExcursionVal + 

excursionVal;
trdCount = trdCount + 1;

end;
if(date <> date[1]) then barCount = 0;
barCount = barCount + 1;
if(barCount = barDelay or barDelay = 0) then
begin

if(MarketPosition <> 1 and buyOrSell = 1) then
begin

buy next bar at open;
excursionVal = 99999999;
value1 = excursionVal;

end;
if(MarketPosition <> -1 and buyOrSell = 2) then
begin

SellShort next bar at open;
excursionVal = 99999999;
value1 = excursionVal;

end;
end;

if(MarketPosition = 1 and BarsSinceEntry > 0) then
begin

if(Low < EntryPrice) then
begin

value1 = Low - EntryPrice;
excursionVal = MinList(value1,excursionVal);

end;
end;
if(MarketPosition = -1 and BarsSinceEntry > 0) then
begin

if(High > EntryPrice) then begin
value1 = EntryPrice - High;
excursionVal = MinList(value1,excursionVal);

184 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



end;
end;
SetExitOnClose;
if(LastBarOnChart) then
begin

if(buyOrSell = 1) then posString = "Long";
if(buyOrSell = 2) then posString = "Short";
print("********************************************");
print(Date:6:0,"Testing on entering a ",posString," after 
",barDelay*5," minute delay");
if(trdCount = 0) then trdCount = 1;
print("On average the market goes against your position", 
totalExcursionVal/trdCount*BigPointValue);
print("********************************************");

end;

As you can see from the code, we relied on the Print Log to output the statis-
tics of our analysis. We set up a batch process by varying the buyOrSell and
barDelay input. We initially set the boundaries of the buyOrSell input to 1
and 2 with an increment of 1. The barDelay input boundaries were set to 0 and
24 with an increment of 3. Table 8.9 shows the results of our batch processing.

TradeStation as a Research Tool 185

Table 8.9
Time of Day Batch Process Results

buyOrSell barDelay NetPrft GrossP GrossL #Trds %Prft

1 15 13100 311275 –298175 292 51
1 21 33825 292750 –258925 292 52
1 18 8175 289725 –281550 292 52
1 24 39075 292875 –253800 292 53
1 12 13650 321600 –307950 292 51
1 0 14000 371100 –357100 292 50
1 6 3175 340250 –337075 292 49
1 3 14650 358150 –343500 292 51
1 9 3775 329525 –325750 292 51
2 15 –13100 298175 –311275 292 48
2 21 –33825 258925 –292750 292 47
2 18 –8175 281550 –289725 292 47
2 24 –39075 253800 –292875 292 47
2 12 –13650 307950 –321600 292 48
2 0 –14000 357100 –371100 292 50
2 6 –3175 337075 –340250 292 51
2 3 –14650 343500 –358150 292 49
2 9 –3775 325750 –329525 292 48

www.fx1618.com



When you initially view the Strategy Optimization report, it may be
sorted by profitability. You can resort by clicking on any of the other column
headings. Table 8.10 shows the contents of the Print Log.

These results may be the first step that leads you down the road of
enlightenment. You may be able to use this information as a foundation to
build a viable trading strategy. If not, at least you may be able to use the pro-
gramming in your own research project.

186 Building Winning Trading Systems with TradeStation

Table 8.10
Maximum Excursion Printout

**************************************************
1020417 Testing on entering a Long after  0.00 minute delay
On average the market goes against your position -2477.06
**************************************************
**************************************************
1020417 Testing on entering a Long after  15.00 minute delay
On average the market goes against your position -2430.05
**************************************************
**************************************************
1020417 Testing on entering a Long after  30.00 minute delay
On average the market goes against your position -2374.32
**************************************************
**************************************************
1020417 Testing on entering a Long after  45.00 minute delay
On average the market goes against your position -2264.90
**************************************************
**************************************************
1020417 Testing on entering a Long after  60.00 minute delay
On average the market goes against your position -2161.47
**************************************************
**************************************************
1020417 Testing on entering a Long after  75.00 minute delay
On average the market goes against your position -2095.81
**************************************************
**************************************************
1020417 Testing on entering a Long after  90.00 minute delay
On average the market goes against your position -2042.47
**************************************************
**************************************************
1020417 Testing on entering a Long after  105.00 minute delay
On average the market goes against your position -1905.31

www.fx1618.com



TradeStation as a Research Tool 187

Table 8.10
(Continued)

**************************************************
**************************************************
1020417 Testing on entering a Long after  120.00 minute delay
On average the market goes against your position -1851.11
**************************************************
**************************************************
1020417 Testing on entering a Short after  0.00 minute delay
On average the market goes against your position -2330.39
**************************************************
**************************************************
1020417 Testing on entering a Short after  15.00 minute delay
On average the market goes against your position -2299.14
**************************************************
**************************************************
1020417 Testing on entering a Short after  30.00 minute delay
On average the market goes against your position -2176.45
**************************************************
**************************************************
1020417 Testing on entering a Short after  45.00 minute delay
On average the market goes against your position -2051.37
**************************************************
**************************************************
1020417 Testing on entering a Short after  60.00 minute delay
On average the market goes against your position -1992.81
**************************************************
**************************************************
1020417 Testing on entering a Short after  75.00 minute delay
On average the market goes against your position -1912.24
**************************************************
**************************************************
1020417 Testing on entering a Short after  90.00 minute delay
On average the market goes against your position -1797.86
**************************************************
**************************************************
1020417 Testing on entering a Short after  105.00 minute delay
On average the market goes against your position -1830.65
**************************************************
**************************************************
1020417 Testing on entering a Short after  120.00 minute delay
On average the market goes against your position -1817.04
**************************************************

www.fx1618.com



PATTERN RECOGNITION

Recognizing patterns in bar graphs can be simple with the human eye. The
computer, on the other hand, has a much harder time. This is a case where the
human mind can apply fuzzy logic and a computer program can’t. Fuzzy logic
is logic that allows for imprecise and ambiguous answers to questions, and it is
the basis for artificial intelligence. A double bottom pattern is simple to pick
out from a chart, but try explaining the formation to someone who has never
seen a bar chart without having a bar chart in front of them. You’ll discover
that you must be very precise with your explanation because a computer is like
a child that must be instructed. We would explain the double bottom pattern
in the following manner:

The market makes a significant low pivot and then trades above that point.
Eventually, the market makes another significant low pivot in the general
area of the first low pivot. The market then rebounds and moves up for an
extended period of time.

Figure 8.1 illustrates a double bottom in Microsoft.
Figure 8.2 illustrates a double bottom in ShowMe.
Our explanation of a double bottom probably sounds reasonable. A per-

son with some experience with bar charts would probably be able to visualize
the pattern in their mind. The problem is, we aren’t describing a double bot-
tom to a somewhat experienced technician. We need to describe it in terms

188 Building Winning Trading Systems with TradeStation

Figure 8.1 Double Bottom in Microsoft

www.fx1618.com



that an inexperienced person or dumb computer would understand. The fol-
lowing is a description a computer might understand:

The market makes a new twenty-day low and then forms a low pivot point.
A low pivot point is a bar that has a lower low than the preceding and sub-
sequent bar. The market then moves to a point that exceeds the highest
high for the past five days and forms a high pivot point. A high pivot point
is a bar that has a higher high than the preceding and subsequent bars. The
market then moves back down and forms a low pivot point within one ten-
day average true range of the first pivot low. The second pivot low can be
above or below the first pivot low. You calculate a ten-day average true
range by summing up the past ten day’s true ranges and dividing by ten.
The pattern is complete once the market has moved 3 ten-day average true
ranges above the second pivot low. The pattern search is cancelled or reset
if it is not completed within thirty trading days or the market makes a new
twenty-day low without first making an intervening five-day high.

See how precise our description has become? Precision is great for program-
ming, but not so great for pattern recognition. We have restricted our instruc-
tions in such a manner that there will be many double bottoms that we will
miss. Unfortunately, we are stuck between a rock and a hard place. Again, this
illustrates how much a computer lacks in intelligence and follows the instruc-
tions it is given to the tee. The following ShowMe code will pick out the
pattern that we described. Hopefully, it will pick out something that looks
similar to a double bottom.

Vars: state(0),tenDayATR(0),barCount(0),firstLowPivot(0);
Vars: secLowPivot(0),firstLowPivotPos(0),secLowPivotPos(0);

tenDayATR = AvgTrueRange(10);

TradeStation as a Research Tool 189

Figure 8.2 Double Bottom in ShowMe

www.fx1618.com



if(state = 0 and Low[1] = Lowest(Low[1],20) and Low > Low[1]) then
begin           {initial state and we found a pivot low that is a 20-day low}

state = 1;
barCount = 0;
firstLowPivot = Low[1];
firstLowPivotPos = barNumber;

end;
if(state = 1) then 
begin            {we are now searching for an intervening 5-day high pivot}

barCount = barCount + 1;
if(barCount > 30) then state = 0; {pattern not completed within 30 

bars}
if(High[1] = Highest(High[1],5) and High < High[1]) then
begin

state = 2;
barCount = barCount - 1; {subtract one bar—we will add one in 

state 2}
end;
if(Low < firstLowPivot) then state = 0; {start over—lower pivot found}

end;
if(state = 2) then

begin         {now searching for the subsequent low pivot point}
barcount = barCount + 1;
if(Low < firstLowPivot - tenDayATR) then state = 0; {too far below 

first pivot}
if(barCount > 30) then state = 0; {pattern not completed within 30 

bars}
if(Low[2] > Low[1] and Low > Low[1] and
(Low[1] < firstLowPivot + tenDayATR and
Low[1] > firstLowPivot - tenDayATR)) then
Begin {2nd low pivot price must be close to 1st low pivot price}

state = 3;
secLowPivot = Low[1];
secLowPivotPos = barNumber;
barCount = barCount - 1;

end;

end;
if(state = 3) then

begin            {wait for market to move up and away from 2nd pivot low}

barCount = barCount + 1;
if(barCount > 30) then state = 0;
if(High > secLowPivot + 2*tenDayAtr) then state = 4;
if(Low < secLowPivot) then state = 0;

190 Building Winning Trading Systems with TradeStation

www.fx1618.com



end;
if(state = 4) then
begin            {final state—if we made it here then we succeeded}

Plot1[BarNumber - firstLowPivotPos + 1](firstLowPivot,"DoubleBottom");
Plot2[BarNumber - secLowPivotPos + 1](secLowPivot,"DoubleBottom");
state = 0; {Job is done—start over}

end;

This code utilizes an abstract programming construct known as a finite state
machine. “What the $#%^%$# is a finite state machine and what does it have
to do with trading systems?” you are probably asking. A finite state machine (or
automata) is an abstract idea that can be used to pick predefined patterns out
of a stream of data. These abstract machines sound complicated, but in actual-
ity they are simple and easy to program; it’s just the name that scares most peo-
ple. These “machines” consists of a finite number of different states. States are
conditions that have been met (you’ll see when we explain the double bottom
code). All finite state machines must have an initial and final state. The initial
state for our double bottom pattern is the search for a new 20-day low. The
final state occurs when the market moves three 10-day average ranges above
the second pivot low. In addition to different states, these machines must also
have a process in which one moves from one state to another.

Initially we set the state variable to 0 (our initial state). We then start
searching for a pivot low that forms a new 20-day low. Once we find this point,
we store the price of the pivot low and the bar number (remember, the bar
number is the sequential numbering of the bars in a chart). We also start
counting the number of bars from this point and set our state variable to 1. We
have now moved from state 0 to state 1; the first criterion of the double bot-
tom search has been satisfied. Now we search for a bar that makes a new five-
day high and is a high pivot. If 30 bars elapse before we find a five-day high
pivot or we experience a lower price than the first pivot low, then we start over.
This is accomplished by setting the state variable back to 0. If we do indeed
find a five-day high pivot within 30 bars, we then move on to state 2. State 2 is
the search for a low pivot point that is close in price to the first pivot low. The
two pivot points must be within one 10-day average true range of each other.
Notice how we control the search criteria by the state variable. Again if 30 bars
pass before we find the subsequent low pivot point, we bail out. Once we find
an acceptable low pivot point, we store the pivot price, bar number, and move
on to state 3. In state 3, we look for a retracement from the low pivot point.
The market must move 3 average true ranges up from the low pivot point to
satisfy our criteria. Again, if all of this is not completed within 30 bars, the
whole process starts all over. If we do satisfy this last criterion, we move on to
state 4 (our final state). In state 4, we use the Plot statement to draw a dot
below the two low pivot points that form the double bottom:

TradeStation as a Research Tool 191

www.fx1618.com



Plot1[BarNumber - firstLowPivotPos](firstLowPivot,"DoubleBottom");
Plot2[BarNumber - secLowPivotPos](secLowPivot,"DoubleBottom");

Since there can be many bars between the pivot points, we keep track of the
BarNumber of the pivot points so we can tell TradeStation where to draw
the dot. Let’s say the first pivot low occurred on BarNumber 25 and the cur-
rent BarNumber is 62. You can instruct TradeStation to draw on the correct
bar by subtracting the BarNumber that you would like to “point out” from the
current BarNumber. In the case of our example, we would instruct TradeSta-
tion to draw 37 bars back: Plot1[BarNumber – firstLowPivotPos].

Any complicated pattern can be found through the use of finite state
machines. The success of your search is based solely on how precise you pro-
gram the search criteria. We have seen some pattern recognition search
engines with as many as 15 different states. With the example of our double
bottom finite state machine, you should now understand how to determine dif-
ferent states or steps and the processes to bail out of a search and move from
one state to another.

INTERMARKET ANALYSIS

Have you ever noticed a correlation between two different markets? There have
been many books written on this very subject. Our last research topic will discuss
how to use EasyLanguage’s multidata capabilities to test an idea based on the
relationship between the U.S. Treasury bond futures market and the S&P500
futures market. These two markets compete against each other for investor dol-
lars. If the stock market is bearish, many times investors will transfer funds from
equities into bonds. If the stock market heats up, then the money will flow from
bonds into the equities market. The test that we will perform will simply give you
the basic tools to start your own intermarket research. This test will involve buy-
ing one S&P500 futures contract at yesterday’s high when the eight day moving
average of closing prices in the bond market crosses below the twenty-four day
moving average. One contract of the S&P500 will be sold at yesterday’s low
when the eight day moving average of bond prices crosses above the twenty-four
day moving average. Long positions are liquidated when the system enters a
short position or the market penetrates a ten-day low. Short positions are liqui-
dated when the system enters a long position or the market penetrates a ten-day
high. Table 8.11 shows the performance of our intermarket trading system.

{System buys the S&P when the eight day moving average of the U.S. Bonds
crosses below the 24 day moving average of the U.S. Bonds. The opposite is
true for the sell side.}
if(Average(Close of data2,8) crosses below Average(Close of data2,24)) then

buy("SPbuyUSdn") next bar at High stop;
if(Average(Close of data2,8) crosses above Average(Close of data2,24)) then

sellShort("SPsellUSdn") next bar at Low stop;

192 Building Winning Trading Systems with TradeStation

www.fx1618.com



if(MarketPosition = 1) then sell next bar at Lowest(Low,10) stop;
if(MarketPosition = -1) then buyToCover next bar at Highest(High,10) stop;

CONCLUSIONS

The research capabilities of EasyLanguage and TradeStation were discussed as
well as the usage of external data, day of week and time of day analysis, pattern
recognition, and intermarket analysis. We can use TradeStation’s optimization
tool to perform batch processing. With TradeStation and its huge library of
data and the concepts that we discussed in this chapter, the ideas that you can
research are unlimited. All good trading systems start out as well-researched
ideas.

This ends our instruction on programming EasyLanguage. We hope the
ideas and programming techniques that we presented will be of great use to
you. You will soon discover that the development and discovery of good, sound
market principles will be much more difficult than programming them. The
rest of the book is dedicated to the utilization of percent change charts, a
beginner’s guide to options, and interviews with some of today’s leading system
traders and vendors. Good luck and good system development!

TradeStation as a Research Tool 193

Table 8.11
BOND-VS-SP Intermarket Results

TradeStation Strategy Performance Report—InterMarketSys @SP-Daily (5/3/1996-
4/19/2002)

Performance Summary: All Trades

Total Net Profit 37,537.50 Open position P/L (2,875.00)

Gross Profit 150,000.00 Gross Loss (112,462.50)

Total # of trades 29 Percent profitable 37.93%

Number winning trades 11 Number losing trades 18

Largest winning trade 27,750.00 Largest losing trade (20,575.00)

Average winning trade 13,636.36 Average losing trade (6,247.92)

Ratio avg win/avg loss 2.1825 Avg trade (win & loss) 1,294.40

Max consec. Winners 4 Max consec. losers 7

Avg # bars in winners 26 Avg # bars in losers 6

Max intraday drawdown (56,062.50)

Profit Factor 1.3338 Max # contracts held 1

Account size required 56,062.50 Return on account 66.96%

www.fx1618.com



194

9

Using TradeStation’s
Percent Change Charts

to Track Relative
Performance*

We ran into Jan Arps, and because of his knowledge and experience with TradeSta-
tion products, asked if he would like to contribute to our book. He accepted our offer and
wrote an interesting chapter on selecting markets through the use of TradeStations’
Percentage Change charts.

Technical analysis generally consists of two parts: selection and timing. Selection
is the process of deciding which stock, mutual fund, option or futures contract,
among the thousands available to you, to trade at any particular point in time.
Timing, on the other hand, is the process of determining when to enter and exit
a trade once you have selected a suitable tradeable.

There are numerous methods, both fundamental and technical, that can
help in the selection process. One of the selection questions many traders ask
is, “How has this stock performed relative to alternative choices recently, and
which is likely to be the strongest in the upcoming time frame?” In order to
answer this question, we must be able to provide a level playing field for com-
paring tradeables whose various prices could range from a dollar to hundreds
of dollars.

For example, let’s say you are comparing a $10 stock with a $100 stock.
Since the beginning of the quarter, both of these stocks have gone up exactly
$10. If you plot these stocks on the same standard price chart with a linear price
scale, the charts of the two stocks will show an identical increase for the quar-

*Jan Arps, President of Jan Arps’ Traders’ Toolbox, is one of the leading authorities on
TradeStation today. He has been trading and developing trading tools since 1952. Jan and his
catalog of 400 TradeStation add-ins can be found at www.janarps.com.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



ter. In fact, however, the $10 stock has doubled in price, while the $100 stock
has only increased by 10 percent.

What we really need is a “normalized” way to display the behavior of
multiple tradeables on the same chart so that we can compare their percentage
change behavior over a specific time period. TradeStation’s Percent Change
chart feature gives you the ability to plot the change in price of any number of
tradeables on the same chart, as a percentage of their price beginning at a spec-
ified starting date.

All Percent Change charts require that you specify an anchor bar. This is
the bar from which all percent change calculations are made. The anchor bar
can be the first bar of the chart, the last bar of the chart, or any bar that you
may select between the first and last bars. Once an anchor bar has been
selected, a percent change value is calculated by TradeStation for each bar on
the chart by subtracting the average price of each bar from the closing price
of the anchor bar and dividing this value by the closing price of the anchor bar.

For example, if the price of a stock at the anchor bar was $100 and the
price ten days ago was $90, then the relative price on the percent change chart
for the bar ten days before the anchor bar will be displayed as –10%. If the
price 30 days after the anchor bar is $125, then the percent change chart will
display +25% on that bar.

The procedure for creating a Percent Change chart in TradeStation is:

1. Right-click anywhere on a price chart, or click on Format in the menu bar.
2. Click on Percent Change Chart.
3. Click on Enable.
4. Select your anchor bar by clicking on either Calculate from first bar, Cal-

culate from last bar, or Calculate from this bar.
5. To select your anchor bar when using Calculate from this bar, place the

cursor on the selected anchor bar on your chart, right click and select Cal-
culate from this bar. The chart will then show the price intersecting the
zero line at your selected anchor bar. All other prices before and after
the anchor bar will be displayed as the percentage change in price relative
to the anchor bar.

6. To display a vertical line showing the location of the anchor bar on your
chart, click on Format Window and click on the box labeled, Show Calcu-
lation Point Marker.

When you look at a collection of stocks on a Percent Change chart, it tends to
move up and down more or less together, responding to overall market fluctu-
ations. However, stocks with increasing strength will begin pulling out of the
pack and you will see these stronger stocks crossing above the less-strong
stocks. Conversely, weakening stocks will begin crossing below the lines of

Using TradeStation’s Percent Change Charts to Track Relative Performance 195

www.fx1618.com



stronger stocks. This is one of the main characteristics we look for on a Percent
Change chart. As buyers, we are looking for stocks pulling out of the pack. As
sellers, we are looking for weakening stocks dropping down through the pack.

It’s sort of like a horse race, with horses moving up and falling back within
the pack as the race progresses. The difference between selecting a winning
horse in a horse race and selecting a winning stock, however, is that you can’t
change your bet in the middle of a horse race. In the stock market there is no
finish line, and you can switch from a struggling stock to a stronger stock as
often as you want, at any time in the “race.”

WORKING WITH PERCENT CHANGE CHARTS

So how do we use Percent Change charts to identify fast-moving stocks? As an
example, let’s suppose we have chosen four different companies to follow:

1. Amalgamated Aquanautics Corp.
2. Better Biscuits, Inc.
3. Cheerful Car Rental Corp.
4. Destiny Drugs & Chemicals, Inc.

Figure 9.1 shows a chart of each of these four companies, plotted in the same
window with the same linear price scale.

Figure 9.2 shows a Percent Change chart of these same four companies
from December, 2000 to June, 2001. This chart has been created using Janu-
ary 1, 2001 as the anchor bar. We see from this chart that by June, stock 1,

196 Building Winning Trading Systems with TradeStation

Figure 9.1 Four Stocks Plotted on Same Price Scale

www.fx1618.com



Amalgamated Aquanautics, was up over 200 percent over the period; Stock 2,
Better Biscuits, was essentially flat for the year; stock 3, Cheerful Car Rental,
was down 36 percent; and stock 4, Destiny Drugs, was down 56 percent.

We can conclude from examining the chart in Figure 9.2 that we would
have achieved the greatest return between January and June, 2001 had we
bought Amalgamated Aquanautics on January 1. But the question we really
want an answer to is, “How would we have known to choose Amalgamated
back in January?”

A momentum trader will say, “choose the strongest stock and go with it
until it is surpassed by one of the others. The power of the Percent Change
chart is its ability to display the relative change in prices of a number of stocks
through a given time period. During the time shown in the chart in Figure 9.2,
the stocks changed places a number of times in their relative rate of change.
Although Amalgamated Aquanautics ended up having the greatest percentage
increase in value since January, it had its biggest upward move between March
and May. Examining the chart more closely, we see that Cheerful Car Rental
initially was quite strong as well, but by mid-February it was dropping down
through the pack.

Figure 9.3 is the same chart as Figure 9.2, but with the anchor bar set at
the end of the chart, on June, 2001. Notice how different the two charts look.
You see that the strongest stock, Amalgamated Aquanautics, rose from below
zero to the zero line in Figure 9.3, while the weakest stock, Destiny Drugs,
dropped down from above the zero line. This is an important fact about per-
cent change charts. The strongest stocks prior to the anchor bar will appear to

Using TradeStation’s Percent Change Charts to Track Relative Performance 197

Figure 9.2 Four Stocks Plotted on a Percent Change Chart

www.fx1618.com



be rising from the bottom, while the weakest stocks will appear to be falling
from the top. You need to recognize this characteristic when using Percent
Change charts using past history to identify a strongly advancing or declining
stock.

Let’s follow the progress of our four stocks month by month during the
six-month sample period, moving our anchor bar forward one month at a time
so that we can see what the chart looks like to an observer at the end of each
month. The anchor bar is at February 1 in Figure 9.4. We see that between

198 Building Winning Trading Systems with TradeStation

Figure 9.3 Chart of Four Companies with an Anchor Bar

Figure 9.4 Anchor Bar Moved to February 1

www.fx1618.com



January 1 and February 1, Amalgamated Aquanautics has begun to move up
sharply, Cheerful Car Rental has also moved up, while Better Biscuits has
remained relatively steady, and Destiny Drugs is weakening. Amalgamated
Aquanautics is clearly the strongest stock at this point, and should be our prime
buying candidate.

In Figure 9.5, the anchor bar has been moved to March 1. During the
month of February, Cheerful Car Rental has continued its downward trend,
along with Better Biscuits. Destiny Drugs rose marginally and Amalgamated
Aquanautics experienced a pullback from its strong showing in January. At this
point no new leader has emerged from the pack that would encourage us to
change our pick from Amalgamated.

In Figure 9.6, the anchor bar has moved to April 1. During the month of
March, Amalgamated is once more moving up from below, Destiny and
Cheerful continue to weaken, and Better Biscuits is holding its own. Conclu-
sion: Stick with Amalgamated.

In Figure 9.7, the anchor bar has moved to May 1. During the month of
April, all four of our stocks rose. Amalgamated continued to be the strongest.
Cheerful made a dramatic reversal, more than Amalgamated. Better Biscuits
improved significantly, and Destiny moved up marginally. At this point, we are
beginning to see a change in leadership. With Cheerful coming up through the
pack past Amalgamated, we should consider adding Cheerful to our portfolio.

Looking back at June 1 in Figure 9.2, Amalgamated Aquanautics turned
out to have been an excellent pick in February, having grown by almost 200
percent between February and June.

Using TradeStation’s Percent Change Charts to Track Relative Performance 199

Figure 9.5 Anchor Bar Moved to March 1

www.fx1618.com



CONCLUSIONS

Percent Change charts are a useful tool in providing a level playing field for
comparing the performance of a group of stocks or commodities in order to
select the most likely prospect for future growth.

200 Building Winning Trading Systems with TradeStation

Figure 9.6 Anchor Bar Moved to April 1

Figure 9.7 Anchor Bar Moved to May 1

www.fx1618.com



201

10

Options*

We wanted to include a chapter on Options because they are yet another weapon that
can be included in one’s trading arsenal. Options are confusing to most traders and,
therefore, are overlooked. Len Yates, with his expertise, clears up the confusion and
introduces several option strategies. The ideas that are presented can be used with most
option analysis software.

Being from the Chicago area, host to some of the world’s largest options
exchanges, I know or encounter many people whose work is related to options
trading. So I have the advantage of being surrounded by plenty of locals who
are familiar with options and how they work. Still, there are likely even more
people unfamiliar with options.

During the course of many social engagements, I invariably end up lead-
ing a discussion on options and what options are. Without even finishing my
standard overview, I am invariably met with a response such as, “Well, that
sounds too complicated for me” from a befuddled listener. This usually leads
me to the snack table because I don’t want to make any party listen to what
might be to them an arcane subject.

But what I want to say, and sometimes do, is that options are not really
that complicated if you’re committed to learning the terminology and the basic
principles of the game. I like comparing options to chess: if you spend an hour
learning the rules, you may find you like the game and can win at it, too.

*This chapter was written by Len Yates, a leading option authority and software developer. He
is president of OptionVue Systems International, Inc. He can be reached at www.optionvue.com.

www.fx1618.com



Of course, practice is key to becoming successful. Options have a number
of strategies with which you need to be familiar, but hardly as many as in chess!
However, anyone with average intelligence can learn all about options in a rel-
atively short span of time.

As most brokerage firms allow you to trade stocks they also allow you to
trade stock or index options, and it’s pretty easy to set up an account and start
trading. Also, almost every brokerage firm that allows you to trade futures also
allows you to trade futures-based options. Establishing an options trading
account requires a little extra paperwork, including a statement that you have
read and understood the options prospectus and are prepared to assume the
risks involved.

As you progress in your education, you’ll start to understand that the
unique qualities of options make them fascinating to trade. They can be used
in a number of strategies, including using two, three, or more options in com-
bination, and using one or more options in conjunction with a position in the
underlying to deliver risk/reward characteristics that cannot be matched by
simply buying or selling the underlying.

Options trading, though, is not for everyone. There are some conserva-
tive options trading strategies, and there are some risky strategies as well,
where your capital can be lost very quickly. It is up to you, after learning as
much as you can before making a single options trade, to decide if you have the
right temperament for it.

OPTION BASICS

Basic option principles start with understanding the agreement between the
buyer and seller. Let’s suppose you agree to sell your car to another party. As
part of your agreement, you and the other party have agreed on a sale price of
the car and a time for it to be delivered to the buyer. This type of agreement is
called a forward contract. Now, if you only agree to let someone retain the right
to buy the car from you for a stated price and only for a limited time, you have
sold an option. Therefore, the holder of the option possesses the right, but not
an obligation, to buy something at a stated price for a limited time. So the party
who sold the option is obligated to deliver the car if the option holder decides
to exercise his right, or his option, to purchase the automobile.

Any asset designated to be delivered in such an agreement (the car in this
example), is called the underlying asset, or the underlying for short. The price
both parties agreed to for buying and selling the car is called the strike price of
the option.

Let’s say my car, an antique collectible, is worth $100,000. I could agree
to let someone have an option to buy the auto from me for, say, exactly
$100,000 anytime during the next two years. The option’s strike price is there-

202 Building Winning Trading Systems with TradeStation

www.fx1618.com



fore $100,000, and the underlying is the car itself. Now, why would I enter into
such an agreement? After all, if the car appreciates over the next two years, that
appreciation would be lost to me because I have agreed to sell the car for
$100,000. Furthermore, I am locked into owning the car, and may not sell it to
anyone else for the next two years—because if the option holder decides
to exercise his right, I am obligated to deliver the car. So, why should I put
myself in such a constrained position?

First, for the money I receive. An option has value and won’t be granted
without some form of payment. For this particular option, I may require
$15,000. The $15,000 (should the buyer agree to purchase the option at this
price) would be mine to keep regardless of whether the option holder later
decides to exercise his right to purchase the car.

Second, I may be unwilling or unable to sell the car at this time. I might
be happy to receive the $15,000, especially if I believe that the car will not
appreciate $15,000 over the next two years. If the car appreciates less than
$15,000, I’m better off for having sold the option. If the car appreciates
exactly $15,000 during the next two years, there’s no net gain as I end up with
the same amount as if I had not sold the option. And if the car appreciates more
than $15,000, then I may regret having sold the option.

Why might someone want to buy an option in the first place? For starters,
leverage. For only $15,000, the option buyer can have control over a $100,000
asset. Without incurring the hassle of ownership, he has the right to own the
car anytime simply by submitting an exercise notice and paying the agreed
$100,000. Suppose, during the next two years, he changes hobbies, and no
longer collects cars but beer cans instead. He now has greater flexibility of get-
ting out of the deal because, in fact, he never got in; he never bought the car.
He simply lets his option expire. Also, he may believe that the car will appre-
ciate more than $15,000 during the next couple of years, presenting the possi-
bility of simply exercising his option and then selling the car for more than
$115,000.

Another reason to buy an option, rather than the asset itself, is the limited
risk. Collectibles don’t often drop in price, and if the value of his car, for what-
ever reason, were to fall below $100,000, the option holder is not likely to exer-
cise. (Why should he pay $100,000 for something that could be bought, on the
open market, for less than $100,000?) And if the value of the car were to fall to
less than $85,000, the option buyer would be happy that his loss is limited to
the $15,000 he paid for the option, rather than having bought the car and now
seeing a loss of more than $15,000.

Does an option have to have a strike price precisely equal to the car’s cur-
rent fair value? Of course not. I might rather have written (sold) my option at
a strike price of, say, $110,000—$10,000 above the current fair value. Such an
option wouldn’t be worth as much, however, and I probably would not be able
to get $15,000 for it. When an option’s strike price is above the underlying

Options 203

www.fx1618.com



asset’s current market value, the option is said to be out of the money (discussed
later). I might prefer selling an out-of-the-money option because it gives my
asset room to appreciate.

Does this option have to end either in exercise or by letting it expire? No,
there is a third possible outcome. If the two parties are willing, and can agree
on a price, the option seller may buy back his option, effectively canceling it
out. Tables 10.1 and 10.2 summarize the transaction and terms involved.
When an option is transacted, the buyer (holder) pays the seller (writer) the
agreed amount (premium) for the option. This premium is the writer’s to keep,
no matter what.

LISTED OPTIONS

In our example, an option was transacted between two individuals. Its strike
price (price of the asset), premium (cost of the option), and duration (expiration
date) was created by agreement and negotiated by the two parties to meet both
of their needs. In contrast, there are the listed options traded on the public
exchanges on many stocks, indexes, bond futures, commodity futures, and cur-
rency futures. There are even listed options on interest rates, inflation rates,
and the weather.

These listed options have standardized features that appeal to a large
group of traders and help to build a liquid market. For starters, several strike
prices are usually available at regular price intervals. And several different dura-

204 Building Winning Trading Systems with TradeStation

Table 10.1
An Option Is Exercised

If the option holder exercises, The option writer is assigned, 
the option holder: the option writer:

• Pays for the asset. • Receives payment for the asset.

• Receives the asset. • Must deliver the asset.

Table 10.2
An Option Expires

If the option holder lets the 
option expire, the option holder: The option writer gets to:

• Does nothing. • Keep his asset.

• Loses premium paid. • Keeps premium paid.

No additional cash changes hands.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



tions (expiration dates), following a set pattern, are usually available. In stocks,
for example, one set of options expires in 30 days or less, another set expires in
approximately 31 to 60 days, another set in approximately 3 to 6 months, and
so on, going out as far as 2 years or more.

Each listed option is also for the same quantity of the underlying asset. In
stocks, one option is based on 100 shares of the underlying stock. In futures,
one option is based on one futures contract.

As the markets are constantly moving, options prices are continuously
quoted and changing. This is possible because market makers at the options
exchanges are always publicly posting prices at which they are willing to buy
and sell (bid and asked prices). They stand ready to take the other side of your
trade, and thus “make a market” in the options they are responsible for. So an
option holder may sell his option(s) at any time, and an option writer may buy
(to close his option position) at any time.

If an option holder exercises his option, the Options Clearing Corpora-
tion assigns any party holding a short position on a random, arbitrary basis. So
an option buyer never finds out, nor should he care, who sold the option to
him. And the option seller never finds out, nor does he care, who bought the
option from him.

In our car example, it is possible, even likely, that the option holder will
exercise his option prior to expiration. It’s more of a direct personal agreement.
In contrast, the vast majority of listed option buyers never exercise; they sim-
ply sell their options on the open market. Many of these people are speculators
who only expect to hold their option for a short time. Once the underlying
makes a move in the expected direction (or perhaps a move in the wrong direc-
tion), they sell. In a sense, up to expiration day, options are like hot potatoes
being tossed around among the market of speculators. Such activity accounts
for quite a bit of the options trading volume but not all of it. Another major
source of trading volume is institutional investors. They may use options to
hedge large positions, or simply trade large positions for speculation.

Until now we have only talked about options to buy. Options to buy
something at a stated price for a limited time are call options. But there is
another type of option—an option to sell something. While these options can
be a bit more difficult to conceptualize, options to sell something at a stated
price for a limited time are known as put options.

Nomenclature and Terminology

An option is specified by stating its underlying asset, the expiration month, the
strike price, and the type (call or put), usually in that order. For example:

IBM July 120 calls.

Options 205

www.fx1618.com



This would usually refer to options expiring in July of the present year. If
the options expire more than a year out from the present day, one might need
to include a year indication of some kind, for example:

IBM July03 20 calls (“03” meaning the year 2003)

Also important is the manner options prices are converted into dollar
amounts. Most stock and index options have a multiplier of 100, meaning that
one option is for 100 shares of stock. So, if you were to buy one option at a
price of 1.10, for example, you would pay $110. Multipliers for futures-based
options vary from 50 to 500.

Long and Short

Most investors understand the concept of being long, whether they realize it or
not. When you own something you are said to have a long position in it. As
such, when you are long the market, you are taking a position to profit in a ris-
ing market.

Going short means to sell something, without first owning it, to profit
from a falling market. How can you sell something you don’t own? In securi-
ties trading, going short involves borrowing the securities (usually from your
broker) to sell. When you move to close the position at a later date, you buy
back the securities, giving the shares back to your broker. With futures and
options, it’s even easier. You’re entering into an agreement that comes com-
plete with standard contractual rights and obligations. The only difference is
that futures and options afford you the opportunity to get out of the contract
at any time by placing a buy or sell order that cancels your position before the
obligations come due.

Being long or short an option does become more complex because of the
two types of options: calls and puts. When you buy an option, regardless of
whether it’s a call or put, you are long the option. When you buy a call option,
because you stand to benefit from the underlying going up, your position can
be considered to be, in a general sense, long the underlying as well. However,
when you buy a put option, because you stand to benefit from the underlying
going down, you can be considered to be, in a general sense, short the under-
lying. Table 10.3 summarizes the four possible scenarios.

It is important that the options trader be familiar with the following terms
and concepts. Note that our examples refer to stock options. However, the
same terms and concepts apply to all asset types.

The value of an option is comprised of two components—intrinsic value
and time value. As these two components are never quoted separately, all you
see is the total price of the option. Nevertheless, understanding these two val-
ues and how they impact an option’s total value is important.

206 Building Winning Trading Systems with TradeStation

www.fx1618.com



To draw an analogy, the value of a company can be said to consist of (1)
book value, plus (2) all the rest. Book value, meaning the company’s value if one
were to break it up and sell all of its assets, is similar to an option’s intrinsic
value. All the rest, including intangible assets and earnings potential, is like an
option’s time value.

Intrinsic value is what you could gain by exercising the option and imme-
diately closing your new position in the underlying. For example, say the price
of AOL is 30 and you hold a 25 call. You know that if you were to exercise your
option, you’d pay 25 a share for the stock. After selling it on the market for 30,
you’d realize a profit of 5 per share on the stock itself. Thus, the intrinsic value
of the option is 5. Intrinsic value can also be considered the money component
of the option’s value. For instance, an option is said to be in the money when
it possesses some intrinsic value. Call options are in the money when their
strike price is below the current price of the underlying (as in the example
above). It’s the reverse for put options, which are in the money when their
strike price is above the current price of the underlying.

When an option’s strike price is equal to (in practice, very close to, as the
market is constantly changing) the price of the underlying, it is said to be at the
money.

Call options are said to be out of the money when their strike price is
above the current price of the underlying. Put options are out of the money
when their strike is below the current price of the underlying.

Time value, the other component that comprises an option’s value,
accounts for the potential of the underlying moving in the option’s favor (up
for calls; down for puts) during the remaining life of the option. Of course, it’s
just as possible for the stock to move against the option. However, if the stock
moves the wrong way, an option’s value can drop, at most, to zero. On the
other hand, if the stock moves in the direction of your position, the option’s
value can theoretically go up without limit. And that’s why options almost
always retain some time value up to expiration.

Time value is the summary of all the possible intrinsic values the option
might have at all of the possible underlying prices, on or before expiration, tak-
ing into consideration the probabilities of the stock reaching each of those

Options 207

Table 10.3
The Four Possible Scenarios of Buying/Writing Calls/Puts

Position Exposure

Long calls Long the underlying

Short calls Short the underlying

Long puts Short the underlying

Short puts Long the underlying

www.fx1618.com



prices. As you may imagine, time value can be a challenge to estimate in your
head or on paper. For that reason, options traders refer to mathematical mod-
els, implemented in computer programs, to compute the fair value of an option.

In the previous AOL example, we showed how an in-the-money option
could be exercised to get into a stock position at below market price. Now
when would it make sense to exercise an out-of-the-money option? Never. To
exercise an out-of-the-money call would be to pay more than the current mar-
ket price for a stock. To exercise an out-of-the-money put would be to sell a
stock for less than the current market price of the stock. Unless you like throw-
ing money away, it never makes sense to exercise an out-of-the-money option.

In fact, it rarely makes sense to exercise an in-the-money option either.
Why? Because you’d be throwing away its time value. Let’s go back to the
AOL example. You have a 25 call and the stock is currently at 30. Your call, if
it has more than a few days of life left, is probably worth something more than
5; say 6.5 (this would be an intrinsic value of 5 plus a time value of 1.5). If you
exercise the option and then sell the stock, as before, you gain $500 on the
stock transaction. However, your option was worth $650. So, you just lost
$150—the option’s time value. It would be better to sell your option on one of
the options exchanges. You would receive the full value of your option of $650,
and you would only need to perform (and pay for) one option transaction ver-
sus two transactions the other way.

Let’s “pop” a little quiz to see if you have grasped the concepts we have
been discussing.

1. A stock is at 65. A 70 call on this stock has a price of 1.85. Is this option
in-the-money, at-the-money, or out-of-the-money? What is this option’s
intrinsic value? What is this option’s time value?
Answer: The option is out-of-the-money, has an intrinsic value of zero,
and a time value of 1.85.

2. A stock is at 80. A 70 call on this stock has a price of 11.60. Is this option
in-the-money, at-the-money, or out-of-the-money? What is this option’s
intrinsic value? What is this option’s time value?
Answer: The option is in-the-money, has an intrinsic value of 10, and a
time value of 1.60.

3. A stock is at 40. A 45 put on this stock has a price of 6.30. Is this option
in-the-money, at-the-money, or out-of-the-money? What is this option’s
intrinsic value? What is this option’s time value?
Answer: The option is in-the-money, has an intrinsic value of 5, and a
time value of 1.30.

4. A stock is at 55. A 55 call on this stock has a price of 3.40. Is this option
in-the-money, at-the-money, or out-of-the-money? What is this option’s
intrinsic value? What is this option’s time value?

208 Building Winning Trading Systems with TradeStation

www.fx1618.com



Answer: The option is at-the-money, has an intrinsic value of zero, and
a time value of 3.40.

5. One further question: In question #2, do you think this option could
trade below 10 (its intrinsic value)?
Answer: Absolutely. In an open market, anything could happen. How-
ever, from a practical point of view, it would not trade for much less than
10. Traders are constantly prowling the options markets for bargains.
When they see an undervalued option, they buy it in an instant. So, if you
were to offer this option for sale at 9.8, someone would quickly buy it
because they know they can immediately exercise it and sell the stock,
realizing a 0.2 profit.

Remember, even if an option’s time value has dropped to zero, it still
retains its intrinsic value. You should be able to sell it for that, or perhaps just
a bit less. This is said to be trading at parity.

Previously, I pointed out that many options are never exercised. It does
not make sense to exercise an option that has any appreciable time value; you
would be throwing away money. However, when an option’s time value is zero
or nearly zero, option holders are likely to exercise. Conversely, if you sell
(short) an option with zero or nearly zero time value, you are apt to be
assigned—and it can happen that very day. Early assignment may or may not
be a significant danger to you. It depends on the nature of the position you
would be left holding.

Closing Option Trades

The best way to close an option position prior to expiration is to execute an
opposing transaction in the market. This is true whether you are holding puts
and calls, and whether you are long or short. If you previously bought a call,
the only way to close your position is to sell the same call. Some may think
buying a put will do, but it will not. Also, selling another call on the same
underlying does not do it. In fact, such trades might reduce your risk, but they
would only build (and complicate) your original position.

The two alternatives to closing a position with an opposing transaction is
to let the option expire or to exercise it. If your option remains out-of-the-
money at expiration, it has no value and should be allowed to expire. However,
if the option is in-the-money at expiration, it has value and should be exercised.

When you exercise a stock option, you pay for and receive shares of stock.
When you exercise futures options, you are immediately in a futures position
and no cash changes hands. When you exercise index options, you simply
receive the intrinsic value as a cash settlement. There is no delivery besides
cash, as exercising index options does not create a new position in another

Options 209

www.fx1618.com



security. If you have an index option that is 3.00 in-the-money at expiration,
$300 is credited to your account.

The option holder isn’t always required to submit an exercise notice. For
example, exercise is automatic for some instruments when the option is a cer-
tain amount in-the-money. It is important to understand what will happen if
you do nothing with an in-the-money option at expiration. Confer with your
broker if you are unsure. It doesn’t hurt to submit an exercise notice, as you
never want to let a valuable option disappear!

American Versus European Options

Options can also be classified in terms of style, which relates to the two ways
in which they can be exercised. If an option can be exercised any time up until
expiration, it is said to be American style. If an option can only be exercised
on expiration day, it is said to be European style.

These references are not concerned with the continent on which the
options trade. American and European style options trade in America, Europe,
and elsewhere around the globe. For instance, in the United States all stock
options and over half of the index options are American style (the remaining
are European style). Some futures-based options are American style and oth-
ers are European style.

An option buyer intending to exercise must understand which style he is
purchasing. An option seller might prefer European style options, because he
might not want to be concerned about assignment before expiration. For the
options buyer who has no intention of exercising, the only difference is that
American style options are a bit more valuable—and a quality options pricing
model will bear this out.

The Special Properties of Options

Options possess unique properties that make them special trading vehicles.
For starters, unlike stocks and futures, their performance is nonlinear. Every
point a stock or future contract moves results in the same amount gained or
lost. Their performance graph is a straight line. Figure 10.1 illustrates this
point.

In contrast, an option’s performance graph curves upward. This nonlinear
shape means that as the underlying moves in favor of the option, the option
makes money faster. If the underlying moves against the option, the
option loses money slower. (In Figure 10.2, focus on the dotted line, which
represents today’s performance of the option.)

The real-world implication of this upward performance line curve is that
an option’s value can go up without limit but can only drop to zero. It is this

210 Building Winning Trading Systems with TradeStation

www.fx1618.com



Options 211

Figure 10.1 The Linear Performance of a Stock or Future

Figure 10.2 The Nonlinear Performance of an Option

www.fx1618.com



unlimited profit/limited risk profile that makes options an attractive trading
instrument for buyers.

The only major detractor is a little element called “time decay.” As time
passes, all other parameters being equal (i.e., the underlying price has not
changed), an option’s value falls. In our diagram, the dashed line represents the
theoretical value of this call option 64 days from now (halfway to expiration),
while the solid line represents the theoretical value of the option at expiration.
The diagram clearly shows that if the stock fails to move above 30 (the strike
price of this option), the value of this option will fall gradually and inevitably
to zero.

Many options traders put this time decay property in their favor by sell-
ing options (rather than buying). Having time working in your favor can be
beneficial, but it can convey a false sense of security; time is what gives the
underlying a chance to move—potentially against the option seller’s position.

Consequently, there is a trade-off (or risk) for both sides. The option
buyer has the nonlinear performance line of an option in his favor, but time
works against him. The option seller has time on his side, but the option’s non-
linear performance line works against him. To limit damage due to time decay,
the option buyer may choose to hold his position only for a short time. Like-
wise, the option seller, to limit the damage from an adverse price movement,
may decide to use a stop.

Volatility Trading

The other unique property options possess is sensitivity to volatility. Options
on more volatile assets (those that experience greater fluctuation in price and
trading volume), all else being equal, are more expensive. Options on less
volatile assets are cheaper. And the difference between the two can be signifi-
cant. Even options on the same underlying asset, during a period when the
asset’s price is perceived by the market to be volatile, can trade at twice
the price they do during quieter periods.

Volatility, then, gives options an extra dimension on which they can be
traded. Not only can they be traded based on expected price moves in the
underlying (called directional trading), but they may also be traded based on
expected swings in volatility levels—buying options when volatility is low and
the options are cheap, selling options when volatility is high and the options
are expensive. Such trading is called volatility-based trading.

Options and Changing Conditions

It is essential to know how options respond to changing conditions. As we’ve
learned, options can move in three dimensions: (1) Price, as options respond to
changes in the price of their underlying; (2) Volatility, as options respond

212 Building Winning Trading Systems with TradeStation

www.fx1618.com



to changes in the perceived volatility of their underlying; and (3) Time, as an
option’s value decays over time, all else being constant.

The initial two dimensions are tradable. Price and volatility fluctuate
giving traders the opportunity to bet on their future direction. But time is dif-
ferent; it only marches in one direction: forward. So, while a trader may put
time on his side by selling options, its basic value cannot be treated the same
as the dimensions of price and volatility.

With changes in the underlying price or interest rates, the values of calls
and puts move in opposite directions. For instance, when the underlying price
rises, calls go up and puts go down. Volatility and time cause calls and puts to
rise and fall in tandem. When the underlying becomes more volatile, both the
calls and the puts go up in value. With the passing of time, both calls and puts
decline in value. Table 10.4 summarizes how conditions affect option value.

The overall effect of interest rate changes on an option is very small. The
effect of time decay is gradual, with some acceleration as expiration approaches.

The Greeks

Options traders use several parameters, so named the “greeks” after Greek let-
ters, to determine how sensitive an option is to changing conditions.

The first, delta, measures how much an option’s price moves in response
to a one-point increase in the price of the underlying. For example, if an option
moves up 0.5 when its underlying moves up 1.0, the option’s delta is said to be
50. This means you would theoretically gain $50 per option contract.

Since calls and puts move in opposing directions when the underlying
price changes, calls always have positive deltas, and puts always have nega-
tive deltas. Call options have deltas that range from 0 to 100. Put options have
deltas ranging from 0 to –100. At-the-money calls typically have a delta
close to 50, while at-the-money puts typically have a delta close to –50.

Options 213

Table 10.4
How Different Conditions Affect the Value of an Option

Call Options Put Options

Underlying price goes up Go up Go down

Underlying price goes down Go down Go up

Volatility goes up Go up Go up

Volatility goes down Go down Go down

Time passes Go down Go down

Interest rates increase Go up Go down

Interest rates decrease Go down Go up

www.fx1618.com



Another greek, vega, measures how much the price of an option changes
in response to a one-point increase in volatility. For example, if an option has a
vega of 29, and volatility increases from 22 percent to 23 percent, the option’s
price will increase by 0.29, and its value by $29. As volatility can never be less
than zero, all options have positive vega.

Theta measures how much the price of an option should drop today just
due to the passage of time. For example, if an option has a theta of –4, its price
should fall 0.04, and its value by $4, by the end of the day. As theta deals exclu-
sively with negative movement, all options have negative theta.

Rho measures how much the price of an option should change (+ for calls
and – for puts) in response to a one-point increase in interest rates. For exam-
ple, if a call option should increase 0.02 when interest rates go up one point,
the option’s rho is said to be 2.

The greeks are theoretical because they measure how an option should
respond to changing conditions. The mathematical models used to calculate
options’ fair values also produce the greeks as by-products. That’s important
because as an option’s fair value constantly changes in response to changing
inputs, the greeks also change in a corresponding manner. In fact, there is
another greek, gamma, that’s just for measuring how fast delta changes!

Sophisticated options traders use the greeks to determine their risk, as the
greeks reveal the exposure of their current position. Greeks become even more
valuable the more complicated the position gets. Market makers, for instance,
often hold positions (long and short) in many different options on a particular
asset. By knowing the net greeks of their combined position (computed by
totaling the greeks of each option position they hold, multiplied by the num-
ber of contracts they have in each option), they can determine their net risk,
and make adjustments if necessary. For example, if they see that their net delta
is a negative 514, they may buy 500 shares of stock to change their net delta to
a negative 14—reasonably close to zero, or “delta-neutral.” A delta of zero
means their total position value will remain unchanged even when the price of
the underlying changes.

Who Are Market Makers?

Individual investors seldom trade with each other. More often, though never
knowing it, they trade with market makers. Market makers are bound by agree-
ment with the exchanges to post bid and asked prices, and trade with interested
buyers and sellers at the posted prices. By doing so, they are making a market.

An individual market maker is usually assigned to one or more underly-
ing issues, and each underlying issue has one or more (typically more) market
makers assigned to it. When multiple market makers are assigned to an under-
lying, they are in competition with each other. This competition can be cut-
throat or friendly, like a cartel.

214 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



Market makers must trade with parties interested in buying and selling at
the stated bid and asked prices, but they are not required to trade an unlimited
number of contracts. The exchanges only require them to trade up to ten con-
tracts at a time. If an investor wants to trade more than ten, he may get the
stated price for the initial contracts but may have to pay a bit more (if buying)
or receive a bit less (if selling) for further contracts.

While ten is the minimum requirement, the most heavily traded options
markets have hundreds, even thousands, of contracts available at the posted
bid and asked prices. Many quote services show the number of contracts
available at the bid and the asked prices. For example, you may see a bid of
2.30, an asked of 2.50, and a number like 300×500. This indicates 300 contracts
are available at the bid and 500 contracts are available at the asked.

To use a rough analogy, market makers act like bookies, taking a small
piece of the action from all participants. Using a computer model to determine
each option’s fair value, they typically post a bid price just below fair value and
an asked price just above fair value. If a seller enters the market offering
options at a fair price, the market maker buys from him. If a buyer enters, the
market maker sells to him. Since the market maker’s selling price is higher than
his buying price, he invariably earns a profit. The market, though, seldom
offers the perfect convenience of a seller entering immediately after a buyer,
and vice versa. Often, orders flow all in the same direction. This requires that
the market maker work to hedge his position. After taking on a new long posi-
tion in a call option, the market maker will immediately look for any other call
options on the same underlying he can sell at reasonable prices. He may
quickly sell an appropriate quantity of these to bring his delta back to near
zero, or he may look for puts on the same underlying he can buy. If he is
unable to find such opportunities, he will likely sell (or short) the appropriate
quantity of the underlying itself.

As you can see, the market maker is always working to manage his risk.
The new long call position placed the market maker in a net long (positive
delta) position that exposed him to losses if the stock were to drop. Not being
interested in betting on the stock’s direction, he looks for a way to neutralize,
or hedge, his position. Any of the earlier trades mentioned will accomplish
that. Using the computer model, the market maker can accurately determine
what the appropriate quantity would be.

OPTION STRATEGIES

Equipped with the knowledge of basic options terminology and some of the
mechanics, the next step is to discuss options strategies. Strategy might sound
like an overall approach to trading the market, but in options trading parlance,
strategy simply means a kind of position (e.g. short calls or long puts). Options

Options 215

www.fx1618.com



trading strategies can be separated into two broad genres: single-option and
multiple-option.

Single-Option Strategies

You may recall, there are four basic single-option strategies:

Long call
Short call
Long put
Short put

When you consider that each of these strategies could be used to com-
plement a position in the underlying, you now have eight single-option strate-
gies. But, before listing all eight, there are two more terms you need to know:
covered and naked.

If an investor is short a call option and already owns the underlying that
would need to be delivered in the event of assignment, his short call option
position is covered. If he does not own the underlying, then his short call
option position is naked. Likewise, if an investor is short a put option and is
short in the underlying, his short put option position is covered. Otherwise,
his short put option position is naked.

Thus the eight single-option strategies are:

Long call
Short covered call
Short naked call
Long call with short stock
Long put
Short covered put
Short naked put
Long put with long stock

We’ll discuss each strategy, including how each performs and when you would
want to use it. Along the way we’ll introduce the concept of margin require-
ments. While our examples use stock options, these concepts are universal and
apply to options on every kind of underlying asset.

Long Call

A long call is considered a leveraged position in comparison with owning the
stock itself. The call option holder controls the stock without actually possess-

216 Building Winning Trading Systems with TradeStation

www.fx1618.com



ing it. And as the option purchase is much cheaper than buying the stock, the
option holder can control the stock for a fraction of the cost. If the stock’s price
goes up even just a few percentage points, it’s likely that all its call options will
increase by a greater percentage; some may even double in value.

Other important characteristics of the long call are limited risk and unlim-
ited potential. An option buyer can only lose the amount paid for the option,
nothing more. At the same time, upside potential is theoretically unlimited. A
call option’s value will continue to increase as the price of the underlying con-
tinues to go up.

Leverage, limited risk, and unlimited potential make call option buying
attractive to speculators looking for quick upside advances. I say quick because,
remember, the option buyer’s enemy is time decay. For each day the call
option position is held, it loses some of its value. That’s why long calls are best
for speculators expecting an upside move within a few days at the most.

The profit diagram for the Long Call (Figure 10.3) illustrates the strat-
egy’s limited risk/unlimited potential profile. The three lines illustrate how
time decay affects the position. The dotted line represents the long call’s the-
oretical performance as of today, while the solid line represents the perfor-
mance at expiration (the final day of trading), and the dashed line represents
the performance at the midway point between today and expiration.

Short Covered Call

We discussed this strategy, also known as a covered write, or buy write, earlier
with the car example. It requires the covered call writer to give up control over

Options 217

Figure 10.3 Profit Diagram of a Long Call

www.fx1618.com



his stock for a limited time in return for income from the sale of the option.
This income is his to keep regardless of what happens.

While the speculative call buyer will only hold his position for a short
period of time, the covered call writer often expects to hold his position to
expiration. If the option is out-of-the-money at that time, it expires worthless.
If the option is in-the-money at expiration, the investor can do two things: He
can buy the option back to close the position and keep his stock; or, he can do
nothing and see his asset called away (loses his stock). Some investors keep their
stock and repeatedly sell covered calls after each expiration, thus continually
adding to their income. The advantage is that covered writers make money
during periods when their stock holdings are going nowhere. The income that
can be generated can be impressive—upward of 40 percent annual returns is
typical. Remember, though, such returns are possible only if the stock goes up
or remains where it is.

Covered writing is a conservative strategy. The sale of call options against
stock holdings reduces the overall variance of returns, thus reducing risk in the
traditional sense. This is why options were created in the first place (not for
speculation). Still, speculators are an important part of the market. They
assume risk that portfolio managers would like to offload. Thus, options are an
essential mechanism for risk transfer—from those who don’t want it (hedgers)
to those who do (speculators).

While covered writing is attractive because of the immediate income it
generates, it does have its shortcomings. The covered writer has the same
downside risk, as with just owning the stock, and his upside potential is limited.
The Short Covered Call profit diagram (Figure 10.4) illustrates the downside
risk and limited potential.

Short Naked Call

The naked call seller has the same interest as the covered call seller—income. The
difference is that the naked option seller does not have a position in the under-
lying. If assigned, he must buy shares on the open market to deliver them. The
risk, of course, is that he’ll have to pay the market’s then-current price.

Performance is the primary difference between being short a naked
option and being short a covered option. Without stock to complement a
naked short call position, there is nothing to offset the position’s risk if the
stock goes up.

By selling a naked call, you get precisely the opposite performance char-
acteristics from buying a call: unlimited risk and limited potential. An option
seller can receive the amount he was initially paid for the option, but no more.
At the same time, he has theoretically unlimited risk. As the price of the under-
lying climbs (with no limit), the call option’s value climbs. At some point, you
need to buy that option to close the position (or have to acquire stock to deliver
when assigned, resulting in almost an identical monetary result).

218 Building Winning Trading Systems with TradeStation

www.fx1618.com



Still, investors like the prospects of earning time decay dollars (in a bear-
ish to neutral position) when the position costs less to put on than a cov-
ered write. In fact, after getting the credit following the initial sale of the
option(s), why wouldn’t a trader continue putting on large positions—as large
as they want? Well, they can’t, because brokerages require investors to keep
money in their account to cover potential losses. This coverage is called the
margin requirement. (Margin requirement is actually old terminology. The new
term, performance requirement, is closer to the mark, but the old term still lives
on.)

There is a standard formula for computing the requirement for a naked
short option position. Without going into details, the amount required is
roughly 5 to 20 times the credit received from the sale of the option(s). So, if
you sell an option and receive a $1,000 credit, you will be required to put up
anywhere from $5,000 to $20,000 in collateral to support the position.

Naked option writers rely on stops to help control the theoretically
unlimited risk. That works well, provided the underlying trades continuously
(i.e., its price doesn’t jump dramatically). As many investors have seen, how-
ever, a stock can sometimes close at one price and open the following day at a
radically different price. Stops are useless against this type of risk. To limit this
exposure, some traders stick to writing index options, since index options don’t
possess nearly this level of risk. The profit diagram for the Short Naked Call
(Figure 10.5) illustrates this strategy’s unlimited risk, and limited potential. As
you can see, it makes money if the underlying price stays the same or goes
down.

Options 219

Figure 10.4 Profit Diagram of a Short Covered Call

www.fx1618.com



Long Call with Short Stock

This is a rare strategy that is seldom used or even discussed. To protect a short
position in stock from an adverse move (to the upside), the trader buys calls.
This permits participation in the expected downward move, and alleviates con-
cerns about the stock jumping northward. However, it costs money to buy
those calls, and that subtracts from the position’s overall profit. And after the
calls eventually expire, if the investor wants continued protection, he’ll need to
buy more. The profit diagram for the Long Call with Short Stock (Figure
10.6) illustrates this strategy’s limited risk and unlimited potential.

Long Put

The put option holder maintains the right to sell stock without actually pos-
sessing it, and does so at a fraction of the cost of shorting the underlying itself.
Buying a put is a highly leveraged bearish position. When the stock price drops
even by a few percentage points, its put options will likely increase by a greater
percentage; some may even double in value.

The Long Put has the same characteristics as the Long Call: limited risk
and unlimited potential. An option buyer’s risk is limited to the amount paid for
the option, and no more. On the plus side, the profit potential is theoretically
unlimited. A put option’s value rises without limit as the price of the underly-
ing goes down. Well, it’s not absolutely unlimited potential, as the farthest the
pot could increase in value is if the stock goes to zero.

220 Building Winning Trading Systems with TradeStation

Figure 10.5 Profit Diagram of a Short Naked Call

www.fx1618.com



As with buying calls, the qualities of leverage, limited risk, and unlimited
potential make put option buying attractive for speculators betting on a quick
downward move in the underlying. Again, the buyer’s enemy remains time
decay, so put buying is best suited when the speculator believes a downward
move will occur fairly quickly. The profit diagram for the Long Put (Figure
10.7) illustrates this strategy’s limited risk and unlimited potential.

Options 221

Figure 10.6 Profit Diagram of a Long Call with Short Stock

Figure 10.7 Profit Diagram of a Long Put

www.fx1618.com



Short Covered Put

This strategy is so seldom used or discussed that the term covered write is uni-
versally understood to mean buying stock and selling calls. But from a techni-
cal perspective, shorting stock and selling put(s) is also considered a covered
write. The short stock covered writer releases control over his short stock posi-
tion for a limited time in return for income resulting from the option sale.

The characteristics of this strategy are an identical mirror image (in terms
of stock price direction) of the traditional covered write (Figure 10.8).

Short Naked Put

The naked put option seller has one interest: income. With this strategy, the
investor expects the underlying stock to remain neutral or go up, thus allowing
his short option to expire worthless. If the stock drops, he’s likely to be
assigned. If assigned, he’ll instantly be long the underlying stock. The price
he’ll pay for the assigned shares, of course, is the strike price of the puts. So,
this investor often shorts out-of-the-money puts at a strike price where he
would consider the stock purchase a bargain.

Selling a naked put offers precisely the opposite performance character-
istics as buying a put: unlimited risk and limited potential. It’s not absolutely
unlimited risk, as the farthest your short put can be driven into the money is if
the stock goes to zero.

222 Building Winning Trading Systems with TradeStation

Figure 10.8 Profit Diagram of a Short Covered Put

www.fx1618.com



Even with the risk, investors are attracted to the prospects of earning
time decay dollars in a bullish to neutral position. As with selling naked calls,
your account is credited for the initial sale of the option(s) and your brokerage
requires collateral to cover the position.

If they are not interested in owning shares of the underlying, naked put
writers employ stops to help control the risk from a downward move in the
stock. That works as long as the underlying trades continuously. But again,
a stock can sometimes close at one price and open the next at a very different
price, and this kind of risk cannot be controlled using stops. The Short Naked
Put profit diagram (Figure 10.9) illustrates this strategy’s unlimited risk, lim-
ited potential, and reveals that it makes money if the underlying price remains
the same or goes up.

Long Put with Long Stock

This strategy, sometimes called a married put or protective put, is considered the
most effective way of hedging long stock positions, as it absolutely limits down-
side risk. Fund managers, unwilling to sell their stock (often for tax reasons),
will buy puts to see their underlying positions through what they believe will
be rough periods. It costs money to buy those puts, and that protection sub-
tracts from the fund’s overall returns. And after the puts eventually expire, if
the fund manager wants continued protection, he’ll need to invest in more
puts. The profit diagram for Long Put with Long Stock (Figure 10.10) illus-
trates this strategy’s limited risk and unlimited potential.

Options 223

Figure 10.9 Profit Diagram of a Short Naked Put

www.fx1618.com



Equivalent Strategies

If you think you’ve been seeing some of the same profit diagrams repeatedly,
in fact, you have. The performance curve of an option is one basic shape—flat
to the out-of-the-money side sloping 45 degrees to the in-the-money-side.

The performance curve of a Long Put is the same as that of a Long Call,
only mirror-imaged left to right. The performance curve of a short option
position is the same as that of a long option position, only mirror-imaged top
to bottom.

The performance curve of a single position in the underlying is a straight
line at 45-degrees. When a complementary stock position is added to an option
position, the stock’s 45-degree line combines with the option’s line to “rock”
the line so the flat line portion becomes a 45-degree portion and the 45-degree
portion becomes a flat line. Consequently, there is one basic shape, and only
four ways of showing it—flipped top to bottom and/or flipped left to right.

Therefore, each of the eight single-option strategies has a counterpart
with an identical performance curve. For example, Long Call and Long Put
Long Stock have identical curves. Table 10.5 summarizes the equivalent
strategies.

How does one decide whether to use a single-option strategy or its coun-
terpart involving the stock? If one currently holds a stock position he wants to
keep, the best approach would be to add the appropriate option to the position.
But what should be done if the investor is constructing a new position from
scratch?

224 Building Winning Trading Systems with TradeStation

Figure 10.10 Profit Diagram of a Long Put with Long Stock

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



A position involving the stock will likely require more capital, and
involves more transactions—two to get in and two to get out. Also, shorting
stock has its limitations. Therefore, the single-option strategy is often prefer-
able because it usually accomplishes the same objective with fewer resources.

Combinational Strategies

The previous single-option strategies section was covered in a formal manner
for the purpose of planting the shape of each single-option performance curve
firmly in your mind. While the more complex option strategies properly
belong to a more advanced options book, I would be remiss if I didn’t provide
a glimpse of the possibilities offered by combinational option strategies. When
we put two or more options together, their combined performance curves form
new and interesting shapes. Common strategies involving two options, with
names like vertical debit spreads, straddles, strangles, and so on, also allow the
options trader tremendous flexibility in meeting her investment objectives
under various market conditions.

Contrary to what you may hear or read from time to time, there is no sin-
gle strategy that automatically makes money. New options traders often enter
the market with the belief that there exists one magical combination that pro-
duces positive returns over the long term. What they fail to understand is that
since each (fairly valued) option is a net zero expected return item, no matter
how many of them you put together, you still have a net zero expected return
(in the absence of a directional or volatility change exception).

Since no particular strategy is suitable for every opportunity, the trader
needs to be able to apply the most appropriate strategy in the given situation.
This requires familiarity with the various strategies and their performance
characteristics. Tables and diagrams can be constructed to show which option
strategies are bullish, bearish, aggressive, moderate, or neutral. Such tables
and diagrams are useful, but sometimes fail to account for three primary con-
siderations: price direction, time frame, and volatility. Another difficulty is that
many strategies overlap others in how and when they should be applied.

Options 225

Table 10.5
Equivalent Strategies

Long Call Is equivalent to Long Put Long Stock

Short Covered Call Short Naked Put

Short Naked Call Short Covered Put

Long Call Short Stock Long Put

www.fx1618.com



So, understanding how the various strategies perform is best gained
through experience, and may be accelerated by the use of models and software
that can simulate the performance of any strategy in the three dimensions
(price direction, time frame, and volatility).

Combinational strategies involve taking positions in two or more differ-
ent options, and possibly another in the underlying. Like combining hydrogen
and oxygen to form a unique substance (water), putting options together in
various combinations results in some amazingly unique risk/reward profiles.

For example, selling a naked at-the-money option is a very risky strategy.
And purchasing an out-of-the-money option is costly and has a poor probabil-
ity of success. However, combine these trades (using two options of the same
type and in the same expiration month) and you form a credit spread—one of
the safest and most successful option strategies around. (See Figure 10.11 for
an example of a put credit spread’s profit/loss profile.)

Likewise, when you buy an at-the-money call or put, chances are you will
lose all your money (stops notwithstanding). However, buy a straddle (both a
call and a put at the same strike price and expiration month) and the possibil-
ity of losing all your money is practically nil (the underlying would have to fin-
ish precisely on the strike price). (See Figure 10.12.)

Many people who know about, but are not truly familiar, with options
believe they are inherently risky. While options allow you, and even tempt
you, to take speculative chances, it is not true that they are inherently risky.
Options are enormously flexible. Yes, they allow you to speculate, but they

226 Building Winning Trading Systems with TradeStation

Figure 10.11 Profit Diagram of Put Credit Spread

www.fx1618.com



also allow you to hedge or even simulate a portfolio. Through combinational
strategies, a position can be constructed that closely fits your goals, price pre-
dictions, projected holding period for the trade, and the current volatility
environment.

Options 227

Figure 10.12 Profit Diagram of a Long Straddle

www.fx1618.com



228

11

Interviews with Developers

Over the years, Futures Truth Company has interviewed some of the best
minds in the system developing and trading industry. We thought it would be
appropriate to conclude with their interviews. We believe you will find wisdom
and some good ideas to incorporate into your own trading ideas and systems.

As the first, we thought it appropriate to choose someone whose ideas origi-
nated before computers were widely used by individual traders but who had a
lasting affect on both technical analysis and, later, computerized trading.

His tools were easily used in paper spreadsheets and modern computer-
ized trading programs, during the past two decades since something called the
programmable calculator gained acceptance. Much of this person’s studies cul-
minated in the writing of his technical analysis book, New Concepts in Technical
Trading Systems, published in 1978, in which he described a tool he created
called The Relative Strength Index.

Welles Wilder
Age: 63
Education: B.S., Mechanical Engineering
Current Position: Director of the Delta Society
Favorite Book: The Bible
Published in late 1998

www.fx1618.com



The Relative Strength Index (RSI) became one of the most widely used
trading tools. The renowned technician we are describing, Welles Wilder,
spoke to Steve Toney recently from his home in New Zealand.

■ ■ ■

How did you get into the futures business?

After a ten year career in mechanical engineering, real estate, and land devel-
opment, I sold my interest in over a thousand apartments and various other
real estate projects and began to pursue other areas of interest.

I read a book titled Silver Profits in the Seventies, by Jerome Smith. Since
real estate is a highly leveraged situation, I looked for a way to buy silver in a
highly leveraged situation; this led me to the commodity futures markets.

I made a lot of money in silver but lost most of it in learning to trade
other commodities. This led to about five years of reading, and researching
everything I could get my hands on relating to futures trading using mathe-
matical models. In 1978, I published the results of these studies in New Concepts
in Technical Trading Systems. My life has not been the same since. (Note: Welles
wasn’t too far off from his prediction. He may have missed Y2K, but he was right on
the money with the markets after 1999.)

What do you think about Y2K and the chances of disaster?

At first I thought it was just a bump in the road causing a lot of hype. However,
because it presented such enormous possibilities, I began to study it in depth.
(Some of my friends call me “Bulldog” because when I latch onto a concept, I
don’t let it go until I have exhausted virtually all the potential it contains.)

In mid 1996, not much had been published on the subject (of Y2K), so the
main area for research was the Internet, which came along just in time. I always
enjoy research, because it involves sifting through opinions and latching onto
the parts that can be proved or, in many cases, the items that cannot be dis-
proved. The more I studied, the more non-disprovable information I gathered,
and the more concerned I became.

I believe most of your readers are most interested in the financial reper-
cussions of Y2K, so I will concentrate on that arena.

The greatest financial party of the century is almost over. Banks and in-
vestors have become drunk with their huge profits and have devised more and
ingenious ways to monetarize debt and then leverage it by means of derivatives.

The fractional reserve banking system now has, on average, $1.32 to dis-
pense to depositors for each $100 in deposits. The stock market is now more
“out of value” than it was in 1929. Bankers see no place for gold in the mone-
tary system; no one remembers or even considers deflation.

Interviews with Developers 229

www.fx1618.com



Y2K will be the catalyst that brings this house of cards crashing down. It
will happen this year in 1999. It started in Asia, and the dominoes are falling.
Russia has defaulted. South America, Japan, Mexico, China are all having big
problems. Savvy investors are using this last market up-move to get out.

I believe that by mid summer to late summer the perception of the impli-
cations of Y2K will start bank runs throughout the world and in the United
States. If the U.S. stock market has not already started to plummet, this will
bring it about. I believe it will make 1929 look like a walk in the park. I believe
1999 will be the beginning of sorrows.

Where are the best financial opportunities now?

In light of the above, there are basically two avenues. One is to buy put options
on the stock market indexes. The other is to buy gold and silver call options. I
prefer the latter because they are cheaper, and I believe they will provide more
return on investment. Also, when the bank runs start and the government
imposes restrictions on withdrawals, what will the average guy write a check
(on) in order to (acquire goods)—it will be on the only things that have always
had intrinsic value, gold and silver.

It would only take a small fraction of these “average guys” to run the price
of gold and silver to unheard of levels. Are the bankers still going to think of
gold and silver as a barbaric relic and continue to sell their gold? No. They will
suddenly realize they have pushed the envelope too far and that the confidence
in the reserve system has finally been broken. It will be a new ball game with
new rules: “He who has the gold makes the rules.” The bankers will be first in
line at the gold window to try to protect their own wealth. I believe this will
happen in the late summer or fall of 1999.

I recommend buying the December 1999 390 gold call options; currently
they are under $200 apiece. If gold goes as high as it has been in the past, each
call option will be worth $40,000. Regarding silver, I recommend buying the
December 1999 silver call options at a strike price of $8. These are currently
available for around $400 each (call prices as of late January).

Are you still actively trading?

Yes, but from a hands-off vantage point. I have a person in my office who is
instructed to trade my account in strict accordance with the Delta Member’s
System. Neither he nor I are permitted to deviate from the system. This is the
best system that I know.

Who do you think has good ideas now, specifically regarding technical
analysis?

I must admit that in recent years I have not kept up with all the new stuff that
has come down the pike. I think Tom DeMark leads the pack in coming up

230 Building Winning Trading Systems with TradeStation

www.fx1618.com



with original ideas. If you will allow me to include myself in this category, I
have spent the last two years in researching a way to automatically denote a
trend change.

Explain what the Delta Society does?

In 1983, I founded the Delta Society International as a vehicle to distribute
information on futures market turning points to its members. A man named
Jim Sloman made an amazing discovery. He showed me that there is a perfect
order in all freely traded markets. Even though the order is perfect, the accu-
racy of the projected turning points is not perfect—if it were I would be
wealthier than Bill Gates, and no one would have ever heard of the Delta Soci-
ety—however I have researched the historical occurrence of each Delta Turn-
ing Point, and have defined the standard deviation and the 100 percent range
for each point.

I have now been able to provide Delta Members with a mechanical way of
utilizing this information. I consider that to be my best work and final achieve-
ment in the arena of technical analysis.

Are you ever surprised at the following your ideas have created?

Frankly, I haven’t thought a lot about it, but the answer would be “Yes.” How-
ever, when I look back over the last 25 years, I must admit that I could never
have chosen any career that has been as challenging and interesting, as reward-
ing, and half as much fun as my third and last (this) career. I feel very fortunate
indeed.

Interviews with Developers 231

www.fx1618.com



Two systems developed by the same person have popped up on the top ten sys-
tems list regularly in recent issues of Futures Truth: Feeder Trader and
Cyclone, which is an S&P day trading system.

While S&P futures traders are obvious target customers for a systems
developer, Feeder Cattle is a thinly traded market that does not attract a lot of
interest in the trading world; Feeder Trader’s strong hypothetical performance
might change that though.

For John Clayburg, because he is a veterinarian and a trader, foreseeing
patterns in both the feeder trader market and the S&P came naturally. Clay-
burg created Cyclone and Feeder Trader.

Futures Truth spoke to Clayburg recently, as part of a continuing series of
interviews with those who have greatly impacted futures systems trading.

■ ■ ■

What do you think are the hot markets this year?

I seem to concentrate on only two-to-three markets now and really don’t have
a valid opinion here.

What inspired you to create the Feeder Trader and Belly Trader systems?

I routinely scan all markets for the best responses to certain repetitive patterns.
The feeder cattle market comes up regularly in these scans, since it seems to be
more cyclical than some others. Also, since we raise feeder calves on our fam-
ily farm, the feeder cattle market was a natural for us.

As for Cyclone, stock index futures seem to create the most interest. It is
probably the most challenging market to handle—and I rarely turn down a
challenge.

Do you plan any revisions to your systems anytime soon?

I have made only one change to Cyclone since its release, in response to the
increase in volatility in the S&P index in 1997. I have made no changes to
the Feeder Trader Program. I plan no changes in either program.

Dr. John Clayburg
Age: 52
Education: Ph.D., Veterinary Medicine, Iowa State

University, 1971
Positions Held: Independent System Developer, Custom

TradeStation Programmer
Favorite Books: Anything by Tom Clancy
Published in 1999.

232 Building Winning Trading Systems with TradeStation

www.fx1618.com



You must be a very busy guy. Does futures trading and programming ever
interfere with your life?

Only if I let it, which is easy to do. There’s always one more project—one
more good idea. . . .

Are you worried about the generally poor performance of S&P daytrade sys-
tems during the first quarter of this year?

Unhappy, yes. Worried, no. Cyclone was developed, as was probably most
other systems, by the careful observation of repetitive patterns in the S&P
market. The most rewarding, repetitive pattern in this market is the big trad-
ing day in which the trend develops early and persists for most, if not all, of the
day. During the time to which you refer, the market was markedly devoid of
the usual presence of these typical days. This resulted in frequent stop-outs as
the system tried, but failed, to catch these big trending days.

Obviously, a system designed around a particular pattern will not work
well when this pattern fails to repeat itself as in the past. Why this change in
market personality occurred is the big question. It’s possible the Dow’s flirta-
tion with the 10,000 psychological level was to blame. You can look back over
the historical price patterns of this market and note several periods where the
big day vanished. The period we have just experienced has been about the
length of those noted on past charts. The market seems to be returning to nor-
mal as we do this interview.

If history repeats itself, these systems will return to their past perfor-
mance as the market regains its normal personality one again.

What advice do you have to those who trade your systems or any other 
system?

You hit my favorite subject here. Anyone who is contemplating trading a
mechanical system owes it to himself and the developer to become intimately
familiar with the system before trading it. It is easy to look at a draw down fig-
ure and say, “that’s no problem”—but when the draw downs hit, and they will,
it’s quite another thing to be able to deal with the losses. It’s human nature to
dwell on the profit possibilities of a system and down-play the potential for
loss.

Also, those who are unsuccessful with a system are usually those who
think they can beat the system by altering its rules or parameters or selectively
deciding which trades to take and which not to take when they are generated
by the system: If you are into system development, by all means concentrate
your efforts toward building your own successful trading strategy. On the
other hand, if you want to trade a particular system, trade the system exactly as
it was meant to be traded by the developer. Rarely, if ever, do the two combine
successfully.

Interviews with Developers 233

www.fx1618.com



What else do you do for fun, besides programming?

As our five kids begin to scatter about at the universities and eventually into
their careers, we find ourselves traveling to visit the gang and getting to see
more of the country in the process. Also, we enjoy raising cattle here at our
home and observing the multitude of wildlife so abundant in our area.

234 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



For this issue’s interview, we talked to a systems creator who has throughout
his life seen opportunity where most others have chosen to see only danger.
Aggressively pursuing opportunities, but with a cool head, Keith Fitschen
developed and now trades, Aberration, a computerized futures trading system
that has had an excellent performance record since its release date. Keith talks
about his experiences trading Aberration and his bold embracing of foreign
futures markets.

■ ■ ■

What do you think the hot markets are this year?

I’m a trend-follower, not a predictor. So far, we’ve had good trades in the cur-
rencies (D-Mark, Swiss Franc, French Franc, and Dollar Index), all the energy
products, and some good short trades in the agriculturals (wheat, beans, bean
oil). Though cocoa isn’t a good market for trend-following, Aberration is
ahead over $8,000 in the current short trade. The industrial metals also had a
good upside run (London Copper, Aluminum, Aluminum Alloy, and Nickel).
The agriculturals are set up for a huge move to the upside should weather
problems develop.

How did you get into systems development?

I was in the Air Force splitting assignments between engineering and flying
when I realized I needed to look to the time when I’d retire and do something
else. I knew that the markets, both stock and commodity, were noisy time-
series data and I knew from my engineering background how to characterize
and analyze that type of data. I started with commodities because they were
more highly leverageable and because everyone seemed to be afraid of them—
opportunity. I bought some commodity data and started to work. It wasn’t
nearly as simple as I thought it would be. And I’m still learning all the time. But
for those with the passion, it’s very rewarding.

Keith Fitschen
Age: 52
Education: M.S., Electrical Engineering (Stochastic

Estimation)
Positions Held: System Developer for TradeSystem, Inc.
Favorite Book on Trading: Cybernetic Trading Strategies, by Murray

Ruggiero
Published June 1999

Interviews with Developers 235

www.fx1618.com



What inspired you to create Aberration?

I started with complex analysis techniques, figuring if it was easy, everyone
would have found something. I quickly learned that complex wasn’t better.
When I went back to the simple things analysts use, to look at data, I “found”
Aberration. That was in 1986. Since then I’ve developed four other really good
trend-following methodologies. All are relatively simple.

What do you say to those that say Aberration has had—though strong perfor-
mance—a high draw down?

I hear that all the time, and it is based on the Futures Truth numbers for the
seven commodities you report on. First, your rating metric (return on three
times margin) is risk adverse. It is purely a profit metric. So the commodities I
chose in 1993 were chosen to maximize your metric, not draw down. By com-
parison, our portfolios are diversified and designed for a good return and low
draw down. People that see and trade our portfolios are very happy with
the draw down characteristics. Second, trend-following systems give back open
equity profit at the end of a trade, most systems as much as 50 percent. This
open equity giveback is draw down when computed from an equity curve.

The example I always use is 1994 coffee. We entered that trade at about
88 and it went as high as about 260. Aberration got out at about 200. The 260
to 200 is a 60 point draw down, or about $23,000. But a trader wouldn’t have
experienced that draw down unless he was in the trade. And if in the trade, he
would have made about 112 points of profit, or about $40,000. True he would
have seen the draw down, but it isn’t as though he experienced it when he first
started trading the system. That’s the problem.

People look at draw down as the amount, plus margin, that they need to
trade a system. And for trend-following systems, it isn’t anywhere near that
amount. That’s why our software reports “start-trade” draw down. That’s the
maximum amount a trader would go below starting equity in the history of that
commodity. For small traders, that’s the metric they really need to see to deter-
mine the risk with various account sizes.

Have you been trading this year?

Yes, I couldn’t in good conscience sell a system unless I traded it. Last year was
a good one for our portfolios, especially the smaller ones that most buyers
trade. And this year is well ahead of pace for most of the portfolios. But every
year will see equity rallies and draw downs with Aberration, or any other sys-
tem. The key to trading is to build a plan around the performance of your
system and recognize when performance, both good and bad, is within the
bounds of historical. When it dramatically steps outside those bounds, the
cause needs to be determined and steps taken.

236 Building Winning Trading Systems with TradeStation

www.fx1618.com



What is unique, if anything, about any foreign markets you trade?

I’m a big believer in diversification, so I’ll trade any market that is unique
(lowly correlated with other markets). I trade things most people have never
heard of: dried cocoons, the Baltic Freight Index, palm oil, azuki beans, and
raw silk. Though we have great markets in the United States, there are great
markets in other countries as well. I trade a lot of world bonds (Canadian,
French, Italian, Swiss, Belgian, Spanish, German, Japanese, Australian, New
Zealand) and I’m always looking for overseas markets that trade better than
ours. For example, London and Paris sugar trade better than our world sugar,
for most trend-following methodologies. And one of our weakest trading
groups for trend-following is the metals. It turns out that the London Metals
Exchange trades a number of metals that trade very well with trend-following
systems.

Are you currently working on any programming projects?

Yes, we will be releasing an S&P system called ASCEND-X in the next month.
The system is really two systems for the price of one: a daily-bar system with
trades that average about six days, and an hourly-bar system with trades aver-
aging three days. One system is countertrend and the other trend-following, so
their equity curves are lowly correlated. The unique thing about them is that
they make enough profit-per-trade to trade an E-Mini S&P with.

Interviews with Developers 237

www.fx1618.com



Understanding how markets work and why individual market players make
certain decisions is a tall order. One could argue that an education in process
modeling and statistics though, along with some appreciation of the complex-
ity of human nature, would be a darn good start.

Quality engineers research and test models that try to account for how
complex human endeavors—like manufacturing automobiles, for instance—
work and what variables affect the desired outcome of the process.

Most developers have come from myriad of other occupations. Probably
no trading systems developer has a more appropriate career background than
Randy Stuckey, a manufacturing quality engineer. Making manufacturing
models helped Stuckey understand how the complex human endeavor of trad-
ing futures works.

We spoke to him recently about his systems, and probed his brain for
pearls of wisdom, as part of our continuing series of interviews with important
systems developers.

■ ■ ■

What do you think the hot markets are this year? Do you have any inflation,
or economic disaster forecasts?

To my knowledge, no one can predict the future. As in the past, the markets
that end up trending will be the big winners for the year. So far this year, all of
our systems have done well for most of the currencies. Catscan continues to do
pretty well with the T Bonds. Golden SX took some nice crude oil profits and
Millennium 2000 currently has over $89,000 in its open positions, so this looks
like another good year.

While we can’t predict the future, there are several markets poised for
some explosive moves. The stock market reminds me of the famous Holland
tulip fiasco. Eventually valuations are going to have to get back in line with
earnings reality. Either earnings are going to have to double or stocks prices
are going to have to drop. Our proprietary S&P system (not for sale at this

Randy Stuckey
Age: 56
Education: B.S., Quantitative Business Analysis
Positions Held: System Researcher/Developer
Favorite Book on Trading: New Concepts in Technical Trading Systems, by

Welles Wilder
Published in August 1999

238 Building Winning Trading Systems with TradeStation

www.fx1618.com



time) seems to be preparing for a long-term short position. Inflation will prob-
ably increase late this year, which should finally allow our Millennium 2000
system to take profits on its short gold position.

How did you get into systems development?

I got involved for similar reasons to those that caused the formation of Futures
Truth. A friend had purchased ten trading systems. None of them worked. He
knew I had a background in Statistics and asked if I could determine why they
were not profitable. Of course at the time I didn’t have a clue, but the idea of
mechanical trading systems was so intriguing that I continued to learn, even-
tually becoming a full-time systems researcher/developer.

By the way, now that I know why those ten systems didn’t work, it’s
enlightening to look at a breakdown. Four of them didn’t work because the sys-
tem vendor literally falsified the system’s performance statistics. That’s felony
fraud, but nevertheless that was the reality. Interestingly, Futures Truth was
tracking two of the falsified systems at the time. While the vendors falsified sta-
tistics that said the systems were making 125 percent per year, Futures Truth
was showing them losing 30 percent to 40 percent per year. If my friend had
been aware of Futures Truth, he would have saved a lot of money. The remain-
ing six systems didn’t work for two reasons. Two of them failed because they
were just plain lousy systems. The remaining four didn’t work because they
were grossly over-optimized.

What inspired you to create Millennium 2000, your latest system?

Some Catscan and Golden SX owners had increased their accounts quite a bit,
which would justify trading more commodities. At the same time, I was look-
ing at the effect of trading not just a diversified basket of commodities but also
trading more than one system (assuming the system did not use the same trad-
ing principle). The effect of multiple system/multiple commodity portfolios
was very exciting. The effect on draw down, profits and Sharpe ratio was excel-
lent. With these thoughts in mind, I decided to develop another system to pro-
vide more diversification. The result was Millennium 2000, my first pure
reversal system. It uses exceptionally simple rules, which I like.

Do you encounter many people trading, say Catscan, who are tempted to take
profits early or decline trades that the system signals?

It happens all the time. Someone said fear and greed drive the commodities
markets. I think this is partially true. I suspect fear is the stronger of the two.
It sure seems that way as I’ve observed people consistently taking early profits.
We’ve seen people take $5,000 early profits on Catscan trades that eventually
were closed out with over $20,000 in profits.

Interviews with Developers 239

www.fx1618.com



What advice do you have for them?

I remind them that they are not trading the system if they take early profits or
decline certain trades. Even more important they are, at that point, trading a
completely untested system with hazy, unwritten rules. I further suggest that
they may be better off having a broker trade the system for them.

Is fundamental analysis ever fruitful?

I suppose it has its place, though I’ve never met anyone who was successfully
trading strictly from fundamentals. I used to create models of manufacturing
processes. We then used those models to improve and control those processes.
No one can perfectly model any process. There are always unidentifiable vari-
ables that affect the process. With manufacturing process models, though, we
usually identified enough of these variables to be successful. Since I’ve never met
a successful fundamental trader, my conclusions are: 1. Successful fundamental
traders must be very rare and that, 2. The “process that drives fundamental com-
modity prices must be quite complex, and it must have lots of unidentifiable vari-
ables or more people would be successfully trading fundamental models.

Have you been trading this year? Why or why not?

I’m strictly a systems researcher—and don’t trade at all—it’s what I enjoy
doing. But it’s a two-edged sword. As some bard said, “To trade, or not to
trade, your own system: That is the question.” In one corner are those who say,
“You don’t even have enough faith in your system to trade it yourself.” I
respect that opinion. In our case it’s an academic exercise, as we just bought our
dream home, which ate 100 percent of our risk capital.

However, there is another corner in the trade/don’t-trade-your-own-
system room. I’ve observed that a vast majority of system vendors who trade
their own system have overoptimized systems. I’ve wondered why that so often
is the case. It may relate back to the fear/greed problem. I suspect that after
three or four losing trades in a row—a perfectly normal event that even the
best systems experience—fear sets in. They start thinking, “My system quit. I
better start tweaking it a bit.” Then they take a perfectly good system, pucker
up their lips and give it the overoptimization kiss of death. I don’t have those
pressures on me. It may explain why I almost never change my system rules.

Are you currently working on any programming projects?

Yes, I’m working on three major projects. The one that is closest to fruition is
a new system that will be called “Little Big Horn.” It uses a different principle
than our other three systems. We use a six-step process to develop a system.
The last step after finalizing the system is to paper trade it for six months real-
time to see if it continues to behave as designed. It successfully completed its
test in June, so it probably will be released for sale in a month or so.

240 Building Winning Trading Systems with TradeStation

www.fx1618.com



Nothing perhaps breeds a more clever futures trader than time and money, lots
of time and money—and when Dave Fox sold his interest in a family-owned
trucking company in 1980, he suddenly had both. Fox is the developer of the
successful Dollar Trader program, designed to trade currency futures.

In 1980, retired and only 50, Fox began spending time in the office of a
good friend who was both a stock broker and a futures broker. Fox researched
and traded a lot on his own also. By 1984, he had realized that in order to trade
successfully, one needed a systematic approach. That same year Fox became a
Commodity Trading Advisor.

Probably no system is requested more for reports: the system has with-
stood the test of time; it trades in popular markets; and currencies are trending
markets—good for system trading. Its programmer is known for his honesty
and openness.

■ ■ ■

Dollar Trader is again in the top ten list. To what, in general, do you
attribute its strong performance?

After one designs a trading system, you need a favorable market to generate
substantial profits. The first half of this year the European currencies, led by
the new Euro, were in a steady decline against the U.S. Dollar, while the Yen
was going sideways. This situation has reversed, and the Yen’s rise against the
dollar has produced a large gain.

What led you to trading systems development? Or, what inspired you to cre-
ate Dollar Trader?

During the year 1990, the indicators that I was using to trade the USDX and
currencies were producing gains commensurate with those of programs that
were rated by Futures Truth, so I decided to incorporate those indicators into
a software package that could also be rated by your organization.

At that time, testing showed that the USDX was the most reliable instru-
ment, so I requested that my system be rated on it alone.

Dave Fox
Education: B.A., Business Administration, University of

Maine (Orono)
Positions Held: Commodity Trading Advisor, Registered

1984
Favorite Book on Trading: New Commodity Trading Systems and

Methods, by Perry Kaufman
Published in December 1999

Interviews with Developers 241

www.fx1618.com



What do you say to those who say Dollar Trader is difficult to trade?

From my communication with users, the most difficult part is absorbing the
draw downs, but if you are going to capture the big winners, you have to expose
yourself to losses.

Do you plan any revisions to your systems anytime soon?

In 1996, we expanded the program to be rated on the D-Mark and Yen, filtered
by the USDX. In 1999, trading in the D-Mark has almost vanished, and the
USDX has been reconfigured to be 57 percent Euro; therefore, we requested
that the program be rated on the EuroFX, traded on the CME, and the Yen.
One can also trade the Swiss Franc, but I would recommend using the Euro as
a filter. Since that is a subjective judgment, it cannot be rated as such. If the
Euro continues to be successful, then we should not have to make any more
revisions.

Have you been trading for yourself this year? If you have, how has that gone?

There are a number of brokers who trade the program for clients, and my
account is traded according to the program by one of them. If I knew of a bet-
ter way, I would tell my users!

What advice do you have to those who trade your systems or any other system?

The record is of course important, but I think you have to understand and have
confidence in the logic to trade a system. I could never trade cycles, because I
don’t have the confidence that the next cycle is going to match the last one.

Are you currently working on any programming projects?

From time to time our users make suggestions, and I will test any idea to see if
it will enhance our results.

What is a common failing of those who are trying to evolve a trading system?

Using so-called continuous contracts will inevitably lead to unreliable results.
Any technique that uses a moving average will be corrupted when contracts are
“hatched” together. I don’t know of any continuous contracts that don’t
change the closes.

242 Building Winning Trading Systems with TradeStation

www.fx1618.com



■ ■ ■

Anticipation is again in the top ten list. To what, in general, do you attribute
its strong performance?

By “again” I know you are speaking about the “top ten for the last 12 month”
list, because Anticipation has been on the “top ten since release” list continu-
ously since having been tracked the requisite 18 months. It will come and go
from the “last 12 months” list according to how good or poor the coffee mar-
ket is, since that is the market you report. I hope I do not sound egotistical
when I attribute the strong performance to the trading methodology, and not
to the coffee market. Coffee has for the last couple of years shown some life
only long enough to get us excited to trade and then dwindles away month
after month to a boring nothing.

What led you to trading systems development and what inspired you to create
Anticipation?

Poor seat-of-the-pants trading led me to trading systems development. A brief
recap: Catching the crash of ’87 with OEX put options after only six months
of full-time trading for a living led me to think windfall profits were easy. The
net percentage gain from the options was windfall even after being cheated out
of about two-thirds of the profit via a very, very delayed fill on Tuesday fol-
lowing crash Monday. I immediately switched to futures trading because I
never again wanted to experience such a delayed fill or to be told the fill was
delayed while in reality someone else pocketed my money.

The first few months of trading stock index futures in the wild, choppy,
gappy market which followed the crash was a disaster. I should not have traded
in that environment being a novice, should not have traded three contracts at
the time, should not have kept them overnight and incurred five digit stop out
losses on gap openings the next day, and should not have lost all the money I
made on the crash plus some more. How could I do this? How could anyone do
this? I did it because I believed regular big profits were immediately ahead. (I

Wayne Griffith
Education: Mathematics, Physics, and Psychology
Positions Held: System Development / System Assist Broker
Favorite Books on Trading: West of Wall Street, Market Wizards,

TechnicalAnalysis by Jack Schwager, Technical
Analysis by John Hill, Sr.

Published in April 2000.

Interviews with Developers 243

www.fx1618.com



traded small and waited for good opportunities with small risk during my first
six months of full-time trading in which I traded the OEX options successfully,
but after the crash windfall I immediately developed a mentality of quick big
profits.) I did it because I didn’t realistically consider the possibility of loss. I did
it because I overtraded, risking too much on single trades. I did it because I
never stopped to think about money management. At first I thought I did it
because of inadequate trading methodology, but later as I moved forward from
the novice state I realized I did it because of the absence of money management.

Not yet fully cognizant that my largest problem was money management,
I determined to improve my trading methodology. Having spent my lifetime
in large scale computerized modeling and simulation, I decided to develop a
computerized model which would allow me to see how well a trading proce-
dure had worked in the past before risking money on it in the future. The IBM
and compatible personal computers failed to be adequate. I heard about
Futures Truth and went to North Carolina to see them. They were nearing
completion of a program that would facilitate testing trading procedures, and
it was to run on an Apple Macintosh which was far superior in capability to the
IBM/compatibles. I asked Mr. Hill if he would sell me a copy of the program.
He said he had not had thoughts along that line. Nevertheless, he was kind to
me and I took home a program for $2000 that would have taken me probably
the better part of a year to develop on my own. I ordered a $13,000 Macintosh
system to run it on—Macintosh was more expensive than IBM back then.
Inspired by the capable tools I now had, I then spent numerous years, day and
night and weekends too, using the Excalibur testing system to investigate the
commodities markets. I didn’t do anything else for years. I hold the world
record for Excalibur testing hours, far surpassing even Futures Truth because
they had other activities taking their time, plus they went home nights and
weekends.

What inspired me to create Anticipation specifically? This has a two-part
answer. First, the technical inspiration. I wanted a system that made a multi-
tude of trades so that it would have a huge historical trade history to provide
confidence that the procedure would hold up in the future. I wanted a proce-
dure that overall got more out of various length trends than a typical trend fol-
lowing procedure—it thus had to trade both the trend and the retracements. I
wanted it to trade retracements for the additional purpose of being positioned
the correct direction quickly in case what looked initially like a retracement
was in fact the end of the trend. It had to be quick enough to change from
trend to retracement and back that it would function well when the market
turned choppy instead of trending. It had to be based on bar chart patterns
only (no lagging indicators allowed) to be fast enough to change directions in
an anticipatory manner. I should have made provision for a sideways listless
market but did not. To match my personality, it could initiate a long position

244 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



only when prices were rising and could initiate a short position only when
prices were declining. Also, it could not remain long when prices were declin-
ing, and it could not remain short when prices were rising—even if it meant
that sometimes it would get chopped around switching back and forth with the
market direction. This requirement was because I was always fearful that a
small move in the wrong direction would turn into a large move. Odd as it may
sound, I developed Anticipation emphasizing psychological comfort to trade
rather than emphasizing profitability. Lastly, but very instrumental, I attended
a Futures Truth seminar toward the end of the ’80’s in which John Hill said
that simple bar charts tell you everything you need to know about a market. He
also said you must anticipate the markets. When John Hill speaks, I listen, and
those two comments plus Excalibur testing system provided me the basis
and tools to develop Anticipation. I named the trading system Anticipation in
appreciation of this. Mr. Hill also stated that money management was the
largest part of any trading decision—too bad I didn’t hear that comment before
I squandered my crash money!

The coffee market has a reputation for slippage. How has your experience
been with fills and liquidity?

Once I traded five months without any unpleasant slippage. Once, for an entire
month, I was robbed on almost every trade, including a limit order executed
past the limit, and the damage was so bad I shut down trading. Now, if I
encounter unacceptable slippage I find a different floor broker, or enter trades
via limit orders and also attempt to exit via limit orders, or bypass trades set up
for potentially large slippage.

Does your system require intraday monitoring?

Yes, it requires constant attention. It doesn’t make time-management sense to
trade it yourself unless you are a full-time trader.

You must be very busy. Does futures trading and programming ever interfere
with your personal life?

Personal life? What is a personal life? I have a vague memory that it is a nice
thing. I would like to experience it again. Soon. To that end, I am in the
process of making changes to the way I approach the futures and systems busi-
ness. What I have been trying to do is too much for one person, but I’ve always
worked alone to preserve the secrecy of my research results. My personal focus
now is trading for a living. For additional income, I registered with the CFTC
and NFA as a broker so that I can provide limited system assist support. By
limited I mean I will trade for a limited number of clients any or all of the sys-

Interviews with Developers 245

www.fx1618.com



tems I’m trading for myself, upon proof of subscription and suitability to trade.
I don’t want to use my time tracking systems I’m not trading for myself.

Do you have any other commentary that you would like to share with the
Futures Truth readers?

I’ve put aside my pride and responded to these interview questions fully, dis-
cussing not only my strengths and achievements, but also my weaknesses and
mistakes. I believe this will help someone—it would have helped me had I read
a similar discussion long ago. We small-scale futures traders are in the most
difficult arena I’ve ever experienced, and I wish you all well.

246 Building Winning Trading Systems with TradeStation

www.fx1618.com



■ ■ ■

R-Mesa consistently ranks near the top of our list, to what do you attribute its
strong performance?

R-Mesa was developed over S&P intraday data dating back to 1982. In addi-
tion, it tests well on international markets like the FTSE and FIB. Further, the
technology combines elements of MESA and R-Breaker, both well known and
mature. The bottom line with this effort is that it produced what I believe is a
robust trading system with known drawdown characteristics that should con-
tinue to exhibit superior performance in the future. Of course there is no guar-
antee that this or any other system will be profitable in the future.

What advice do you have to those who trade yours or any other system?

There are several key issues you need to know when system trading. First,
know your system. Know its weak points and strengths. Learn its negative risk
characteristics and positive reward characteristics. Understand that the draw
down and maximum consecutive losing trades numbers are your numbers. You
either designed, bought, or leased these numbers. Understand that these are
your numbers and they may sooner or later be reflected in your account. If
your account is undercapitalized, relative to these numbers, and you stop trad-
ing at the bottom of a draw down then you are selling, if you will, at the exact
low of the market move. Likewise, if you start trading at the top of an equity
swing high, just prior to a draw down, you may be buying the top of the mar-
ket, just prior to a swing down in equity. Unfortunately, watching from the
sidelines how much money a system made recently entices you to jump in, pos-
sibly at the exact intermediate term top in the equity curve. Similarly, learning
that your favorite system you follow is in the midst of a large draw down is not
very appealing to jump in. By trading a system you are in effect going long the
system with a buy and hold mentality. Most system traders I have spoken to
know that jumping in and out of the system is counterproductive, yet many still

Mike Barna
Education: B.S., Mathematics, Arizona State University;

M.S., Astronautical and Aeronautical
Engineering, Stanford University

Positions Held: President, Trading Systems Design and
Analysis

Favorite Book on Trading: A Non-Random Walk Down Wall Street,
Andrew W. Lo and Craig MacKinlay

Published in June 2000

Interviews with Developers 247

www.fx1618.com



try to second guess the system with the result of overtrading the system equity
curve. If you believe your system is really robust and has a good chance of
being successful in the future, plan on adequate capital to trade the system and
plan for the inevitable draw down that will surely come. Know your numbers.

Secondly, your trading infrastructure must be perfect. When the system
equity curve was created, it was done so without missing a trade, going on vaca-
tion, getting sick, having data feed problems, having computer problems, get-
ting missed or bad fills, and so on. The equity curve was created with perfect
execution. Likewise your execution needs to be perfect. You can’t second guess
the system. You can’t throw emotional overtones into the execution of the sig-
nals. System trading was not meant to be emotionally pleasing. If anything it
turns out to be emotionally difficult, but this difficulty can be ameliorated with
adequate capital knowing that the potential draw down is well planned for and
that human intervention will be needed only if a predetermined level of draw
down (risk) is exceeded. If you have a second thought, read filter, for your sys-
tem, then test that filter and see if it holds up in testing. Your filter may just
turn out to be a one time wonder. If you are second guessing the system, you
are not system trading but attempting to extract information from the system
using it as an adjunct for your discretionary trading, using it as a indicator in
effect. This hybrid type of trading is in effect using a buy or sell rule which may
be only 35 percent accurate. Clearly using a system as a forecaster or leading
indicator is inefficient since the system is meant to be traded as a system and
not meshed in with other discretionary tactics.

What do you think the hot markets are this year?

The Grains are showing up on many traders’ radar screens as potential inter-
mediate term movers. I also like the Stock Index Futures and the Bonds. Sys-
tem traders are particularly fond of markets that are exhibiting a higher degree
of volatility since breakout systems like volatility whereas horizontal markets
chop them up.

Are you working on any new projects that you can tell us about?

The research is ongoing continuously creating hundreds of new systems and
analytical approaches. Of particular interest now are approaches capturing
inefficiencies in the market elements generally overlooked prior to the intro-
duction of newer data mining engines, genetics, neural networks and other
nonlinear algorithms. Further, an advance in the integration of the Maximum
Entropy Spectrum Analysis into current research has showed promise. John
Ehlers and myself have been deeply involved in research into various modeling
algorithms incorporated into trading systems. This research includes interme-
diate term Stock systems as well as short and long term Commodity systems.

248 Building Winning Trading Systems with TradeStation

www.fx1618.com



What do you think about stock trading systems?

The development of stock trading systems is far more difficult than developing
a commodity system since in the commodity world you need to be concerned
with just one time series per system. In the stock world, your system needs to
work on hundreds of individual time series each one exhibiting unique charac-
teristics. Our work in this area started by evaluating generic trend-following
systems that have historically been shown to work quite well over large sets of
markets like channel breakout systems. Baselining, stock portfolio systems
against buy and hold approaches, gave us performance targets with which to
compare the performance of these systems. In the near future, we will see
many more stock systems made available to those who wish to trade systems on
baskets of stocks. The stock system trading industry pertaining to the individ-
ual trader is just now in its infancy.

As a professional TradeStation PowerEditor programmer, what do you think
of the security issues with black box systems that are built into TradeStation
2000i?

The bottom line here is that if you have a system that you believe is superior
and you are unwilling to subject it to potential security compromise then never
give it to anyone, never share the technique with anyone and never sell it. His-
tory has shown that just about anything can be cracked so you should never
rely on any security layer as impervious. To further protect your technique a
DLL programmed for TS 2000I is an option. If you wish to share or sell your
system then considering a DLL coded system is critical.

Do you have any other commentary that you would like to share with the
Futures Truth readers?

By keeping track of our sample or walk-forward testing such as presented here
in Futures Truth, you have taken the first step toward proper investigation of
trading systems you are planning to trade and understanding the system spe-
cific drawdown characteristics.

Interviews with Developers 249

www.fx1618.com



■ ■ ■

What do you think the hot markets are this year?

I don’t allow myself the luxury of giving similar predictions since similar
attempts are invariably wrong. Traders’ lives would have been much easier if
any of us knew what would be the next trending market. Simply so, nobody
does. And that’s exactly why even the money-management-gurus can never
overemphasize enough the need to diversify through markets, system matrices
and money management techniques.

What do you think about stock trading systems?

I still have to see one that actually beats the simple buy-and-hold policy in a
nonoptimized long-term test! Trading results are directly related with the
involved risks. Since the buy-and-hold system is the one that carries the larger
possible risks on a stock-by-stock basis it is an unbeatable system. We can eas-
ily come up with trading methodologies that outperform it on a very large
number of stocks but not the whole stock universe while that universe knows
only one trading direction, up and then up again. It may be a different story in
an extended bear market. But since that has not been the case for the past 20
years or so, and since there is no valid indication that this market characteris-
tic is changing its face anytime soon the best would be to exercise the least in
trading-entry/exit judgments!

Here is the best illustration: 90 percent of the billion-dollar stock fund
managers constantly fail to beat the S&P500 Index although they also simply
buy-and-hold stocks. Obviously so, their assumption that they can outsmart
the market by “picking” the best stocks for their portfolio holdings is not help-
ing them either. And that applies for both of those that use technical or funda-
mental analysis techniques in their stock-picking decisions.

Ziad Chahal
Education: Political Science, American University of

Beirut
Positions Held: Full-time trading-system developer and

vendor (Alfaranda, CTA)
Favorite Book on Trading: The Futures Game: Who Wins? Who Loses?

Why?, by R. Teweles, and F. J. Jones
Published in August 2000

250 Building Winning Trading Systems with TradeStation

www.fx1618.com



Your BASIS and ARCS systems consistently rank near the top of our list. To
what do you attribute the strong performance?

I have a rather shocking answer. I am convinced that a deep valley actually
exists between simple technical analysis studies and the methodologies used in
successful systems. Technical functions and indicators are mere tools that
never are more than 50 percent right. Yet each of these tools has a character-
izing personality that can be used by the professional developer to produce a
more-or-less robust and solid system. Three years ago, I thought it would be
impossible to have long-term successful systems if the methodology is not opti-
mized for each market environment. I owe to the “unknown soldier” his con-
sistent encouragement and the fact that he persuaded me to follow on the track
of releasing systems that have a minimum number of parameters and some
simple trading rules that can and should be applied on absolutely all markets.
I like to think that this is the main factor behind the relative success of my sys-
tems although this nonoptimization process does not offer in itself any guar-
antee of future trading results, specially on short-term basis.

What advice do you have to those who trade yours or any other system?

We first have to admit that systematic trading is a very hard proposition since
it means committing one’s money to ideas that have been studied or developed
by the final user, a factor that is bound to hang huge doubts in the trader’s
mind.

Furthermore, systematic trading also is a relatively dull experience that
does not answer to the natural need for that fulfilling adrenaline charge we all
look for. In fact, the vast majority of those who use systems have started trad-
ing their own discretionary ideas. They experience the losses and the nerve-
breaking emotions and finally take the decision to trade systematically. Yet,
they always seem to be unable or unwilling to let the system work its way with-
out interfering in its signals.

I can bet that a good number of the systems tracked by your magazine are
solid and robust enough to be the rival-envy of many professional future fund
managers. Nevertheless, these managers constantly make money when our
usual clientele loses it. And there can be only one reason; they wisely manage
their funds when our “systematic” traders are still attempting to manage their
emotions.

In short, the decision to trade systematically is an excellent step in the
right direction, but the job cannot be completed if you are still looking for ways
to beat the markets at the rhythm of 200 percent a year. Try adequate capital-
ization and unwavering discipline. They make wonders even with defective
trading systems.

Interviews with Developers 251

www.fx1618.com



Are you working on any new projects you can tell us about?

I released in March a new system called ONIX that is a frequent position
trader for stock-index futures. My newest (July) release though is WEAVER:
a happy discovery of an astoundingly robust methodology that works with one
parameter that is vastly applicable for longer-term trading of all commodity
markets while equally offering the possibility of short-term trading the stock-
index futures!!!! I hope my work is improving with time. You and my cus-
tomers will be the judge.

You must be very busy. Does futures trading and programming ever interfere
with your personal life?

Well it always does. Right? The truth is it used to interfere more a few years
ago when I used to spend 16-hour days in front of my computer testing vari-
ous trading ideas. I remember times when the absorption was so great I never
stepped outside my home-office for a two-month period. Thanks to my loving
wife and forgiving kids. Their support was crucial.

Who do you admire in the industry? Why?

I am a fan of John W. Henry who happens to have the largest CTA firm and
an enviable consistent track record. I would also like to mention that I have
been blessed over the past few years with many friends who have offered me a
great deal of much-needed encouragement and support. Of them, I am partic-
ularly impressed with a reader of this magazine (whom I won’t name) who,
besides his unconditional true friendship, has proven to me over the past three
years that he has a very lucid mind and practically has system-development
running in his veins.

Do you have any advice for those that are new to trading?

Systematic trading is a mid-phase between the common discretionary trading
and the allocation of your money to a professional fund manager. I dare assure
that less than 1 percent of new traders who decide to trade their own ideas will
ever make money. If you do not think you have the material to be in that 1 per-
cent group then look for a trading system that fits your personal preferences
and risk tolerance levels. This is a non-forgiving, very tough business. Be pre-
pared for the worst irrespective of any rose-garden scenario a system developer
or a broker or a friend has ever painted for you.

Do you have any other commentary you would like to share with Futures
Truth readers?

We all may have various points of disagreement and/or private opinions about
FT [Futures Truth] tracking, system ranking, and general modus operandi.

252 Building Winning Trading Systems with TradeStation

www.fx1618.com



Yet, we all have to agree though that this is an invaluable institution without
which we all would have been much worse be it as future professionals or new
or seasoned traders.

FT deserves our support and I hope we can all turn in to make of it a real
forum that discusses in-depth all systematic trading problems and features.

Interviews with Developers 253

www.fx1618.com



■ ■ ■

The Trendchannel system has been ranked in our top ten systems since release
date for several months now. To what do you attribute its consistent perfor-
mance?

[Steve Marshall] The Trendchannel is a robust system. Our original concept
for what became the Trendchannel, wasn’t a true “system” at all. We wanted
to create a simple trend indicator, a tool that would work in any market to tell
when the market was trending, the direction of the trend, and consistent sup-
port and resistance levels. Somewhere along the development process we dis-
covered its potential as a complete system. The best times to make money are,
of course, in trending markets, and we had developed a very stable indicator
that tells you when a market is entering a trending phase; and more impor-
tantly, when it’s sideways and not trending—so you can stay out. Once we had
our formula, we tested entering a position when our indicator signaled a new
trend and getting out when it signaled a sideways trend. At that point it didn’t
matter how we varied the parameters, it still made money. Changing parame-
ters affected the number of trades, the length of a trade, and the win/loss ratio,
but every combination was potentially profitable. So, because the system is so
robust, it has worked as well in real-time as it did in historical testing.

[John Tolan] The Trendchannel formula is different from all the other
technical studies out there. We developed our system by correcting what we
found to be flaws or drawbacks with the other previously available indicators.
Our historical testing helped us to further improve our formula design. It is

Steve Marshall
Education: M.B.A., University of Denver
Positions Held: Renizon Corporation, CQG, Managing

Partner of Trendchannel
Favorite Book on Trading: Reminiscences of a Stock Operator, by Edward

LeFevre
Published in October 2000

John Tolan
Education: B.S., Economics, University of Illinois
Positions Held: Chicago Board of Trade, Merrill Lynch, CQG,

Managing Partner of Trendchannel
Favorite Book on Trading: Technical Analysis of Stock Trends, by Edwards

and Magee

254 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



however, not “optimized.” We use the same formula for all markets and it
works well regardless of parameter settings. Our goal was to create an auto-
matic trend indicator that is easy to use—green light, red light, even though
the formula behind the bottom-line signals is more complex. The Trendchan-
nel formula combines adaptive measurement of volatility, momentum, and
both long- and short-term trend direction. The system defines trends in a way
that is consistent with classical trend analysis, but does a better job keeping you
out of sideways (trendless) markets and keeping you in major trends.

Do you have any advice to those who trade your system or any other system?

[Steve Marshall] Once you have researched and chosen a system to follow,
trade that system’s rules precisely, and give it time to work. Know the system
and believe in it. Make sure that you understand how the developer
intended the system to be traded and try to do exactly that. If you can’t execute
trades the way the system requires, don’t expect to duplicate the system’s per-
formance. If you are unable to follow a system exactly, many brokerage firms
have a system assist division that will trade your account based on the rules of
the system. Once you’re following a system, give the trades some time to work.
A system with a long-term track record with good results may still have peri-
ods of months with no profits. You have to be ready to accept that and stick
with the system long enough to see it work.

[John Tolan] On our Website we offer a free trading guide called “The
Simple Rules for Successful Trading.” The information in the guide is good
advice for any trader. If you can’t apply these rules to our system or any other
system, then you will not be successful trading.

Is there anything that you would tell to those new to trading commodities or
stocks that you wish someone had told you when you were getting started?

[Steve Marshall] Have a plan before you start trading. Plan out everything you
can. Know when and why you will buy and sell. Know which markets you will
trade. When you’re starting, it may be enough to trade in just a handful of mar-
kets. Know how much you are willing to risk—in each trade and in your
account overall. The more rules you have, the easier it will be to make trading
decisions. Also, realize that you shouldn’t trade just to be in the market.
Nobody has a system that makes money under any market condition. There
are times you should be out of the market waiting for a signal. Have patience.

[John Tolan] Oh yeah. . . . That was my initial motivation to write
the Trendchannel trading guide—to share this advice. The vast majority of
those who begin to trade lose money. That does not happen by chance. It’s
predictable because they make and repeat the same basic mistakes over and
over again. If you can use a trading system with rules that enable you to avoid
making these mistakes, you will be successful.

Interviews with Developers 255

www.fx1618.com



What do you think the hot markets are this year?

[Steve Marshall] Crude Oil, Natural Gas, and the Euro Currency have been
hot markets for us this year. But our approach is trend following. We don’t try
to predict anything. We do what the market tells us to do. We go with all trend
signals and see what happens. I have no idea of expectation of where the mar-
ket is going to go, but no matter what it does, I know what I will do, how I will
trade it. That’s the security you get trading a purely mechanical system that
you have confidence in.

[John Tolan] The high volume markets will most likely be the “hot mar-
kets.” In other words, where there is volume there will be trends. In addition
to price, we track the trends in volume. That’s one of the methods we use to
select markets to include in our stock and futures portfolios.

How do you prepare for your trading day?

[Steve Marshall] Well, for our futures account, we have a system-assist broker
trading the Trendchannel system for us. They execute trades perfectly, plus it
is creating an actual trading track record, and frees us from watching the mar-
kets. We do our own stock trading based on the end-of-day signals from our
Trendchannel Stock Report. I spend less that 30 minutes a day on trading.
Once our reports have been generated, I place the trades for the next day’s
open. I might check the market once during the day, but generally, I just wait
for our report to come out each afternoon.

Do you think there is a future in technical stock trading systems?

[John Tolan] Yes, for all of the same reasons we believe there is a future in
trading systems for futures. Most beginning traders, including stock traders,
try to figure out which way the markets are headed by looking at charts, ana-
lyzing technical indicators, or by reading news and fundamental information.
When these approaches fail, they seek other methods or advice. One solution
they will find is to trade an automatic system with a proven track record. And,
of course, once they figure that out, and find a system, they will also seek help
in tracking and entering the trades for the system. That’s why we also believe
there is a big future in system assist services for stocks as well as futures.

[Steve Marshall] Absolutely. . . . We have many subscribers, including
brokers, who use the Trendchannel trading system for stocks. The Trend-
channel works just as well with stocks as it does with futures.

Do you consider them (stock systems) a viable way to trade stocks successfully?

[Steve Marshall] Yes, no question about it. The volume in stocks can create
very strong long-term trends. A purely technical trader can do very well in the
stock market.

256 Building Winning Trading Systems with TradeStation

www.fx1618.com



[John Tolan] I believe it’s the best way. On our Trendchannel Stock
Report, we screen out the 50 most actively traded stocks, the Trendchannel 50.
These high-volume stocks have produced some spectacular trends since we
started tracking these two years ago. And of course the Trendchannel Trading
System does well when markets have big trends.

Are you guys working on any new projects you can tell us about?

[John Tolan] We just released the Trendchannel Software for Tradestation.
I’ve always thought it would be great to have a trading system that works just
like a traffic signal, with automatic “green light, red light” indicators that
instantly flash on the charts when to buy and when to sell. That’s exactly what
the Trendchannel Software does. We are making it available so that anyone
can trade the Trendchannel system in any market, in real time, and in any time
frame they choose. You can totally automate your trading.

Interviews with Developers 257

www.fx1618.com



■ ■ ■

R-MESA consistently comes up as one of the top S&P and daytrade systems.
To what to do you attribute its consistent performance?

In a word, robustness. R-MESA uses R-Breaker by Rick Saidenberg, one of the
Futures Truth top ten systems of all time, as its origin. Mike Barna and I com-
bined R-Breaker with the Mesa cycles-measuring algorithm to make the trad-
ing signals adaptive to current market conditions. MESA makes it easier to buy
at the bottom of the cycle and easier to sell at the top of the cycle. Combining
a proven trading system with theoretical considerations was just the beginning.
The robustness arises from the extensive out-of-sample testing we have per-
formed on data going back to the beginning of the S&P contract. We know the
system will perform well in the future because it has been tested against all
kinds of market conditions in the past.

Do you have any advice to those who trade your system or any other system?

The biggest error I see traders make is the inability to stick with a trading sys-
tem through the draw downs. This can be due to a variety of considerations,
ranging from undercapitalization to just plain fear. I find this strange, because
the major reason for trading systematically is to have the confidence that the
system will perform in the future much like it has traded in the past. It is not dif-
ficult to scan past performance for the maximum draw down, so the required
capitalization can be estimated. It is a virtual guarantee that this maximum draw
down will be experienced again, particularly in nonrange-bounded markets like
the S&P, and a trader should be prepared to withstand it. I can understand the
fear factor where traders are using a black box system developed by a vendor. It
is important that the vendor show both the long term and short term historical
performance to demonstrate system robustness and that the system has not

John Ehlers
Education: B.S.E.E., and M.S.E.E., University of Missouri,

Doctoral work at George Washington
University

Positions Held: Electrical Engineer, specializing in
Information Theory; President, MESA
Software

Favorite Book on Trading: Trading Systems and Methods (3rd ed.), by
Perry Kaufman

Published in December 2000

258 Building Winning Trading Systems with TradeStation

www.fx1618.com



failed in recent market activity. This whole issue of trust is where Futures Truth
comes in. By acting as an independent third party, the trader can have confi-
dence that the system has been exercised by knowledgeable traders and that
your unbiased evaluation will establish performance credibility.

Is there anything that you would tell to those new to trading commodities or
stocks that you wish someone had told you when you were getting started?

My biggest failure as a trader is being married to a trade. Once I have made a
decision to enter a position, I absolutely know I have made the correct deci-
sion. When the trade goes against me a lot, then I shift my thinking by saying
to myself that I cannot afford to get out now and I will stick it out until the next
cycle comes along. This simply means that I lack the discipline to be a discre-
tionary trader. I wish the pitfalls of discretionary trading had been pointed out
to me earlier so I could have bypassed the educational expense. I learned a lot,
but am now focused on systematic trading.

What do you think the hot markets are this year?

I judge performance parametrically. For example, I look at the profit per trade
and the MAR Index (net profit divided by draw down). As a small trader, I also
look at the return on margin. Having said that, I conclude the oldies are the
goodies. As you have pointed out, R-MESA continues to perform well in
the uncertain S&P markets this year. I see some movement to the E-Mini
because the slippage can be minimized. I also trade the Treasury Bonds.

How do you prepare for your trading day?

Believe it or not—nothing. My work has already been done in developing the
systems. The entry points are in place and the stops are established. There is
nothing left for me to do. I have supreme confidence the systems will perform.
I just keep score at the end of the day.

Do you think there is a future in technical stock trading systems?

Absolutely! However, trading stocks is vastly different from trading futures. I
see stock trading as a two-step process. First of all, with stocks you have to
know what to trade. You have already made that decision with futures. Only
after you have lined up some likely candidates, can you implement a trading
system. In this sense, the stock trading system is a market timer. Since most
stock traders trade the long side only, the most successful systems will be some-
thing primarily designed to tell them when to exit the trade. A parabolic could
work well in this scenario. Also, channel breakout systems tend to be relatively
robust for stocks.

Interviews with Developers 259

www.fx1618.com



Do you consider them (stock systems) a viable way to trade stocks successfully?

Given that people have now found that stocks can and do decline in price, I
think it is the only way the small investor can successfully trade stocks. For
example, a system will enforce the discipline to get out of a stock position
when the price declines. As I said, that is my own trading weakness, and I sus-
pect is a weakness in many traders. All the other benefits of systematic trading
also apply. For example, it might cost $8 commission to buy 100 shares and
another $8 to sell. That means, with slippage, that the cost per round turn will
be about $0.30 per share. When we test our system, we know we must make at
least $0.30 per share profit, on the average, just to breakeven. That is more dif-
ficult than it sounds. There is no margin leverage with stocks. This means
making breakeven is more difficult, even with a successful trading strategy, and
the profit return on account equity will be smaller than with futures. On the
other hand, not being margined means that trading with a system can produce
lower draw downs.

Are you working on any new projects that you can tell us about?

I have written a new book Rocket Science for Traders to be published by John
Wiley & Sons next spring. The theme of the book is introducing modern dig-
ital signal processing techniques to technical analysis. As a result, several novel
and unique indicators have been invented—some that could not be pro-
grammed without the new processing techniques. I am forever in a research
mode. In the course of writing the book, I have started to investigate applying
nonlinear filters to match the waveshapes that result from the probability den-
sity function of nonstationary market prices. This is fascinating stuff, with
some preliminary successes in creating indicators. My general approach is to
develop concepts on theoretical waveforms and then transition to real world
market data. The ultimate proof of performance will be the development of
profitable automatic trading systems based on these nonlinear filters.

Who do you admire in the industry? Why?

There are a lot of really great people involved with trading. I admire them in
a variety of categories: as businessmen, as traders, and as technicians. When we
narrow the industry down to system developers, I have great respect for Bill
Brower and Nelson Freeburg for their thoughtful application of first princi-
ples. I admire Mike Barna for his vast knowledge of what works and what
doesn’t work as well as a work ethic that is second to none. Mike and I have
collaborated on a number of projects. We work well together because we are
kind of a combination of Steinmetz and Edison in our approaches. I like to
think about the theoretical aspects and Mike will try a jillion things until some-
thing works. That’s a pretty powerful combination.

260 Building Winning Trading Systems with TradeStation

www.fx1618.com



What led you to trading system development?

Necessity. I have traded my own accounts discretionarily and have been suc-
cessful. On the other hand, I have had some relatively large declines in equity.
I realized that I never knew when my hand went cold, even though I was trad-
ing the same way as when I was successful. When I started system development
based on my own discretionary rules I found that, indeed I was getting wild
swings in my equity in my hypotheticals. I also found that I was using some
rules that were not objective and could not be programmed into a system. By
carefully crafting the systems and watching key parameters such as profit per
trade, the MAR index, and the profit factor, I found that I could bound the
excessive swings. I now could reasonably estimate what I could expect in the
way of profit and draw down.

You must be very busy. Does futures trading and programming ever interfere
with your personal life?

Of the 16 waking hours per day we all have, the majority of that time is spent
at work. Because of that and because I feel a person is defined by his contribu-
tion to society, my priorities are heavily weighted toward work. Besides that,
this is fun! How many different ways can one be creative and see the success of
that work pay off directly in dollars as well as acknowledgment by one’s peers?

Do you have any other commentary you would like to share with our readers?

I would like to thank Futures Truth for providing the service of independent
and objective evaluations of commercially provided trading systems. By being
exercised by knowledgeable traders like yourselves, your readers can have con-
fidence in their selection when it comes time to purchase a system.

Interviews with Developers 261

www.fx1618.com



■ ■ ■

Sidewinder consistently comes up as one of the top Bond systems and as one of
the top ten systems since release date. To what to do you attribute its consis-
tent performance?

This is a good example of having a variety of systems each of which is designed
to trade a particular phase of a market. The Sidewinder system was designed to
be active and to trade countertrend when the bond market is in a broad trading
range. It just so happens that the current bond market fits the characteristics the
system was designed to exploit. When the bond market stops trading sideways,
the Sidewinder system should shut itself down and one of our trend following
systems should start trading actively and perhaps do equally as well. As much as
I like Sidewinder, I wouldn’t want it to be my only system for trading bonds.

Do you have any advice to those who trade any of your systems?

Watch out for the S&P market these days. I think there is more volatility in
that market than we had expected when we originally designed the S&P sys-
tems. The high volatility could be a problem.

Is there anything that you would tell to those new to trading commodities or
stocks that you wish someone had told you when you were getting started?

Remember that we can always control our losses very precisely but it is hard to
control profits. Draw downs and losing periods are usually caused by a reduc-

“Chuck” Charles LeBeau
Education: Degree in Finance from California State

University, Long Beach
Positions Held: 1967–1988 Vice President, Regional Futures

Director, E. F. Hutton; President—Island View
Financial Groups; President—
StreakingStocks.com; Founder of System
Traders Club; Co-author of Computer Analysis
of the Futures Market (with David Lucas)

Favorite Books on Trading: Computer Analysis of the Futures Market, by
Chuck Le Beau and David Lucas
The Ultimate Trading Guide, by John Hill,
George Pruitt, and Lundy Hill
Trade Your Way to Financial Freedom, by Van
K. Tharpe

Published February 2001

262 Building Winning Trading Systems with TradeStation

www.fx1618.com



tion in the size of the profitable trades rather than a big string of sequential
losers. Be sure to make every effort to maximize the size of your profitable
trades by concentrating on timely exits.

What do you think the hot markets and stocks are this year?

The stock market will probably continue to be the hot market for the foresee-
able future. I like any stock that has high liquidity, high volatility, and that dis-
plays a rapidly rising ADX after coming out of a basing pattern. We list those
stocks every day on our StreakingStocks Website.

How do you prepare for your trading day?

Whether I am trading stocks or futures, I prepare the night before after the
markets are closed. I rarely make any intraday trading decisions. I try to know
exactly what I am going to do and I enter all my orders the night before. Then
I can sleep late and go out and play golf or work on writing a book or article
without worrying about the markets.

Are you working on any new projects you can tell us about?

Well, I have gotten very involved in doing research on stock trading in recent
years. Some of the strategies I designed for futures trading seem to work even
better in stocks. I have the new www.StreakingStocks.com Website up and
running and I’m going to start a stock hedge fund later this year. I’m also
working on a new book about exits and trying to do a revised edition of the
Computer Analysis book. I’m also doing some teaching in my workshops as
well as private consulting. All of it is keeping me very busy.

Who do you admire in the industry? Why?

I admire Bill Eckhardt who helped train the “turtles” for Richard Dennis and
who is a very successful CTA on his own. I think he really understands trading
and how to combine good strategies with sound money management. I wish he
would write more articles or a book.

What led you to trading systems development?

I was a good discretionary trader who got lazy. It’s a lot easier just to program
your knowledge into the computer and let the computer do the analysis and all
the hard work. When I was much younger I used to get a big thrill out of trad-
ing and making all those critical trading decisions on a minute-by-minute basis.
Now I no longer get a rush when I’m trading. I would rather be out playing
golf.

Interviews with Developers 263

www.fx1618.com



Between the Systems Trader’s Club, StreakingStocks.com, and your com-
modity systems, you must stay very busy. Does futures trading and program-
ming ever interfere with your personal life?

No, it doesn’t interfere at all. On the contrary, I feel that since I became a sys-
tematic trader I actually have a life. I now have time to enjoy my grandkids and
work on my golf game instead of watching a computer screen all day.

Do you have any other comments you would like to share with our readers?

Yes, don’t be afraid to take losses. I think a good attitude about losses is what
makes a successful trader. Losses are simply an unavoidable cost of doing busi-
ness. Also, be sure to monitor your systems on a regular basis and look for weak
spots. Too many traders think they only have a problem once their equity is
down 50 percent or more so they don’t monitor their systems until the losses
get their attention. By then it is probably too late to do anything constructive
other than to stop trading before you lose it all. Monitor your systems even
when they are winning. There is always room for improvement.

What do you think is the future in technical stock trading systems?

I am amazed at what I see going on in the stock market. I regularly see stocks
moving 15 percent to 50 percent or more in a day. It will take a very good tech-
nician to profit from those short-term moves and the buy-and-hold folks are
going to be in for a terribly rough ride. I think that technical analysis is going
to become more important and more popular than ever.

Do you consider stock systems a viable way to trade stocks successfully?

Yes, no doubt about it. What I like about stock trading is that there are so
many stocks we can watch. I can set up some very stringent criteria and if I look
at 9000 stocks I can always find something that is doing exactly what I want.
The big problem I have is the close correlation of all the stocks with the gen-
eral market. If my timing is good on an individual stock but I mis-time the
direction of the market I am going to lose money nine times out of ten. Tim-
ing the general direction of the market over the short run is very difficult but
I think it can be done. I’m working on it.

If you have a preference, would you prefer to trade commodities or stocks on a
mechanical trading system? Why?

I have no real preference and I’m willing to go where the opportunities are. I
think it is a mistake to approach decisions with an either/or attitude. Most
often, “all of the above” is the best answer. Right now, I like the opportuni-
ties in the stock market but I would still be watching for opportunities in
futures.

264 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



■ ■ ■

We consider the Stafford S&P Daytrade one of the most consistent systems out
there today, and it has tested extremely well on the NASDAQ. To what to do
you attribute its consistent performance?

Our Volatility Based Daytrade system is just what its name says. It uses the
actual volatility of the S&P 500 market to dictate buys, sells, and exits. So it
changes. I think stock index volatility is here to stay. Traders must use that in
their plan of attack.

Do you have any advice to those who trade any of your systems?

Not only my systems, but any systems. Do your statistical studies. Look at
the past performance. Calculate things like the average monthly profit, average
daily profit, average profit and loss, and worst-case expected draw down (a rule
of thumb says this is the yearly standard deviation). Then you know what to
realistically expect when trading.

Is there anything that you would tell to those new to trading commodities or
stocks that you wish someone had told you when you were getting started?

Yes. Any trade can have only four possible outcomes. A large profit, small
profit, small loss, and a large loss. Three of those are acceptable.

What do you think the hot markets and stocks are this year?

Stock Indexes. Stock Indexes. And stock indexes.

How do you prepare for your trading day?

First I analyze my trades for today. Where I was right. Where I can improve.
Then I look at the market from a top-down approach. What do I expect long

Lundy Hill
Education: B.S., Electrical and Computer Engineering,

Clemson University
Positions Held: Ex-NASA “Rocket Scientist” Engineer; Three

years in the Pits of the Chicago Exchanges;
Current full-time trader, CTA, Trading
Systems Developer

Favorite Books on Trading: Market Wizard I and II, John Hill’s early (and
late) stuff,
The Disciplined Trader, Darvis’ books

Interviews with Developers 265

www.fx1618.com



term, short term, and tomorrow. I try to have some idea of what may happen
today. Key levels. But, I don’t blindly stick to this perception. If the market
proves me wrong, I will try to adapt.

Are you working on any new projects that you can tell us about?

We have new NASDAQ systems coming online. But, my immediate goal is the
successful application and blending of all of our approaches. I think we have
the technology right now! But, it is another matter to successfully apply it. I
want an overall portfolio approach of systems trading on stocks, futures and
indexes. Long-, intermediate-, and short-term time frames.

Who do you admire in the industry? Why?

I think that should be obvious. Don’t you?

What led you to trading systems development?

It seemed the next logical step given my background and my family’s back-
ground.

Does futures trading and programming ever interfere with your personal
life?

Sure. You should see Thanksgiving dinner at the Hill house. Five traders
around the table. Sure, we are going to talk trading, but, I have other passions
in life I pursue with equal vigor. I think that is important to stay fresh in your
trading.

Do you have any other comments you would like to share with our readers?

Most of the clichés you hear about trading are true. For instance “limit your
losses.” If your average loss is $500, try using a $350 to $400 stop loss instead.
If your average profit is $500, work on improving your trade entry and profit
objective calculations and try to get your average profit to say $600 to $700. Do
those two (simple?) things, and I think you will be amazed at the results.

What do you think the future looks like for technical stock trading systems?

Great. I think the increase in volatility of individual stocks will lend itself to a
systematized approach to trading stocks.

If you have a preference, would you prefer to trade commodities or stocks on a
mechanical trading system? Why?

I think diversification is one of the tenets of successful trading. Therefore, as I
said before, trade and invest in both, and across multiple time frames.

266 Building Winning Trading Systems with TradeStation

www.fx1618.com



■ ■ ■

All of your systems have shown consistency. However, the last few years have
been tough for trend followers. To what do you attribute consistent perfor-
mance and why have trend followers suffered through the last two or three
years?

It has indeed been a rough road for trend followers in recent years, myself
included. Even the legendary Richard Dennis called it quits (again), and the
Wall Street Journal ran a story on the toll that the markets were taking on
prominent CTAs. When you analyze it, we’ve seen the markets do this many
times before. What was different this time was the persistent nature of the
choppiness. When my programs started into a draw down, I was salivating just
a few months later, thinking that the markets were due to go into another
trending phase soon. Little did I know that we had many more months of
rough water. We have had spurts of trending here and there, and my systems
have caught whatever trends were there, but it’s been a while since we’ve had
what one could call a “normal” year.

Do you have any advice for those who trade your systems or any other systems?

There are three keys to success for any trader, regardless of methodology.

1. Have a trading plan.
2. Have the discipline to follow that plan.
3. Use good money management to help survive the inevitable losing

periods.

That’s it. Of the 95 percent or so of people who lose money, I suspect that
virtually every one of them violated one or more of these tenets. Following

Peter Aan
Education: B.M., M.M., University of North Texas
Positions Held: I’ve been a professional musician since I was

15 (I’m 51 now), and I have performed with
Symphonies, Operas, Rodeos, and Elvis!
CTA, PWA Futures; Broker, Dillion Gage, Inc.

Favorite Book on Trading: New Concepts in Technical Trading Systems, by
Welles Wilder

Published in June 2001

Interviews with Developers 267

www.fx1618.com



these three rules won’t guarantee you a spot in the winner’s circle, but your
chance is pretty close to zero if you violate them.

On a more specific basis, before you begin to trade a system, you should
examine where it currently is in its equity curve, both on a portfolio basis, and
an individual market basis. I feel better starting to trade a system after its been
doing poorly.

Is there anything that you would tell to those new to trading that you wish
someone had told you when you were getting started?

The above three rules are good advice for anyone who hasn’t yet learned them,
novice or not. One of the first systems I learned and admired in the early ’70s
was Donchian’s Weekly Rule. Sometimes I wish someone had forced me to
trade that system and no others! And think of all the money I would have saved
on computers and software! Also, a subscription to Futures Truth magazine is
a must for any trader who purchased trading systems. I wish FT had been
around during my early years.

What do you think the hot markets and stocks are this year?

Coffee, Yen, Franc, and Euro Currency. I’m guessing, of course, and I name
these only because the currencies and coffee have been the trending champs
over the decades.

How do you prepare for your trading day?

I download data every evening and run my systems on TradeStation. My
orders are typically entered before the opening, and then I am mostly through
for the day.

Do you think there is a future in technical stock trading systems?

This is not an area in which I have done much work. I suspect that it would be
difficult to devise mechanical systems that can match in real-time the long
term return of about 11 to 12 percent that stocks have returned over many
decades. Many mutual fund managers have underperformed the market, so
one must assume that beating the market is not an easy task.

Do you consider them (stock systems) a viable way to trade stocks successfully?

I don’t care much for trading stocks, except perhaps for entertainment, but I do
favor holding equities for the long-term. Unlike most futures markets, stocks
have an organic upward bias to them. Long-term investments in equities take
advantage of that bias.

Coming from a system developer, this may seem like heresy, but here is
my long-term “system” for making money in equities.

268 Building Winning Trading Systems with TradeStation

www.fx1618.com



a. Make monthly purchases of mutual funds or exchange traded index funds,
preferably in a tax-advantage vehicle, such as a 401k. Dollar Cost Aver-
aging is the eighth wonder of the world.

b. Diversify among different market segments (large cap, small cap, growth,
value, foreign).

c. Rebalance the portfolio as needed.
d. Avoid bonds and individual stocks.
e. Don’t even think about timing the market. The market won’t do anything

over the next 30 days that will make much difference 20 years from now.
f. Pray for frequent bear markets. (If you’re still buying equities, why would

you want them to go up?)

Are you working on any new projects that you can tell us about?

I don’t do nearly as much research as I did in previous years. Perhaps it would
be a good exercise to “wipe the slate clean” and research some area of techni-
cal analysis that is dramatically different from what I have done previously.

Who do you admire in the industry? Why?

I’ve always admired Larry Williams for his creativity, both in system design
and system promotion. Larry never bores me.

What led you to trading systems development?

I believe that my personality led me naturally to system trading. From the
beginning, I have always favored approaches that are mechanical. To come
into the office every morning and make trading decisions on every market
would be torture for me. For others, trading a system verbatim would be
torture.

You must be very busy. Does futures trading and programming ever interfere
with your personal life?

What personal life? Seriously, since I don’t do a lot of research anymore, I put
in a normal 60 hours a week, just like every other American. For entertain-
ment, my favorite pastime is going to the movies.

Do you have any other commentary you would like to share with Futures
Truth readers?

Don’t buy a trading system from the vendor who promises the most.

Interviews with Developers 269

www.fx1618.com



■ ■ ■

The last few years have been tough for trend followers. To what do you
attribute your Grand Cayman System’s consistent performance and why have
trend followers suffered through the last two or three years?

Most market analysts see the past several years of market behavior as extraor-
dinary, and in some aspects they are. I have seen many similar periods of chop-
piness at different times over the last three decades, but recent years have been
different in that the relative lack of trendiness has lasted longer than in the past,
and in many cases the markets have at the same time been more volatile than
usual. I believe this is a result of the topping out of the economy, changes in the
worldwide economic situation, and ever-increasing investor uncertainty.

The Grand Cayman System has weathered this period well, and I believe
that is due to its long term approach of being able to catch what trends there
are and ride them successfully. Also, the fact that the system is not overopti-
mized has helped it while other, heavily optimized systems, have failed due to
the schizoid markets.

Do you have any advice for those who trade your systems or any other system?

The primary elements in being successful at system trading are the system
itself, money management, diversification, and psychology.

First, and foremost, you need a system that has proven itself over a suffi-
cient period of time, at least 5 to 10 years, and is not overoptimized. Subscrib-
ing to Futures Truth is a good way to select such a system.

Next, you need to make certain you are well-enough capitalized to trade
whichever portfolio of commodities you choose, betting that whatever the
maximum draw down has been in the past, it will be exceeded at some time in
the future.

To me, diversification between commodity complexes is important so
that if one group of commodities goes “awry,” the odds are the other compa-
nies will make up for it.

Michael Chisholm
Education: B.S., cum laude, Psychology, University of

Maryland
Positions Held: Technical Engineering Writer on Polaris

Submarine Missile Program Trader since
1959; Publish advisory since 1976; President,
Taurus Corporation

Favorite Book on Trading: Trading For a Living, by Dr. Alexander Elder
Published in August of 2001

270 Building Winning Trading Systems with TradeStation

www.fx1618.com



Perhaps, most important is psychology, which entails having the disci-
pline to follow through on all the system’s recommendations precisely as given
and the patience to wait for new signals and stay in trades until the system itself
calls for an exit.

Is there anything that you would tell to those new to trading that you wish
someone had told you when you were getting started?

That trading futures can be easy and profitable, but only if one follows the gen-
eral guides I just gave. If one is into developing his or her own systems, then
it is hard, time-consuming work—unless you love research like I do, then it
becomes fun.

I think the psychology of trading may be the most important element,
since trading exposes one to all the emotions, from joy to fear, from exhilara-
tion to grief, and the trader must be prepared for all this and be able to deal
with it appropriately.

What do you think the hot markets and stocks are this year?

I’m anticipating some major bull markets in the Grains and Precious Metals
this year, and the Currencies cyclically are due for significant upmoves. Given
the deflationary environment coupled with building inflationary pressures,
predicting price movements for the coming months is more difficult than
usual.

How do you prepare for your trading day?

We get our download just after dinner, and my partner (wife) and I do the
analysis on TradeStation then and place our orders in the morning. Most of
the rest of our time is spent doing research, keeping four computers running
tests on TradeStation almost 24/7 looking for improvements in technique.

What is your preference for style of trading? Do you prefer day, short term,
intermediate term, or long term trading the best?

For me, it’s a question of profitability and personality. I don’t enjoy day trad-
ing, so I don’t do much of it, profitable though it can be. My own preferences
are either very short term trading or very long term. I believe they can be the
most profitable, and they fit my style and personality best.

You mentioned very short term and long term trading as your favorites.
Quite a disparity here, isn’t there?

Well, yes and no. Maybe I’m manic-depressive [smile], but I go through peri-
ods of time when I want the excitement of very short term trading, and then

Interviews with Developers 271

www.fx1618.com



other periods, especially around vacation times, when the long term trading fits
my lifestyle and personality at that time best.

Your Grand Cayman System falls under that long term category. Overall, do
you feel that kind of approach is superior to other types of trading like day
trading and short term?

Yes, looking at making money in the futures market more as an investor than
as a trader, long term, and even very long term trading is probably the best
investment in the world today, assuming of course, you have a valid long term
trading system.

Are you working on any new projects that you can tell us about?

Yes, an exciting new long term system we’re almost finished developing called
Horizon, which Rachel is programming as a stand-alone windows CD-ROM.
I’m working on new versions of my original book, The Taurus Method, as well
as my book on the psychology of trading, Games Investors Play. And, just in case
that isn’t enough, I’m also outlining a book on long term trading while both of
us continue running research.

Who do you admire in the industry? Why?

This, I know, is nepotism, but it’s my partner and wife Rachel who in five years
as an AP and computer programmer (and web master) is a work of art!

What led you to trading systems development?

This could be an entire book, but for brevity it was helping my father develop
systems to bet on horses, which was the foundation of my development of sys-
tem analysis. Incidentally, he did pretty good at the track with his system!

You must be very busy. Does futures trading and programming ever interfere
with your personal life?

Trading commodities is our life, corny as that may sound. We do things recre-
ationally of course, but we find our business work not work at all, but play.

Do you have any other commentary you would like to share with Futures
Truth readers?

Yes. Know yourself. Without the right psychological perspective, no matter
how sound your system, you cannot succeed for long.

272 Building Winning Trading Systems with TradeStation

www.fx1618.com



■ ■ ■

To what do you attribute your ETS Daytrade System’s consistent perfor-
mance and why have trend followers suffered through the last two or three
years?

We do not totally agree with the statement “tough” for trend followers. We
have found the contrary and ETS has had some of its best years ever the last
few years. Many newer systems were designed and optimized for bull markets
only. The systems fell apart once the market started to decline. This last year,
we have been in a bear market on most major indexes so the system’s design
had to take into account what would happen in bear markets. Since ETS was
originally designed in 1990, during volatile up and down markets, it has held
up very well over time, especially the last few years.

Do you have any advice for those who trade your systems or any other system?

Trends are defined by the time frame you look at. On a one-minute chart or
tick chart, there are dozens of trends per day to trade. As you go up in time
frame, the number of trends decreases. You need to find a comfortable
time frame to trade that meets with your personality. What works for one
trader may not suit another and the number of trades you wish to make per day
should determine the time frame you look at. As a general rule, the longer the
time frame, the more relevant the data is and more reliable the signals—this
goes for most any trading system.

Is there anything that you would tell to those new to trading that you wish
someone had told you when you were getting started?

Yes. Expect both wins and losses. If you are looking for a system that has no
loser, forget trading and go into another hobby. Systems are best judged by the
risk/reward ratio, not the number of wins to losses. You can make a tomorrow
of money on a system that is only right 40 percent of the time so long as you
have big wins and small losses. The gross number of wins is meaningless with-

Michael A. Mermer
Education: B.A., J.D., Hofstra University
Positions Held: 1990 to date, President,

TradersSoftware.com CTA
Favorite Book on Trading: Technical Traders Guide to Computer Analysis

of the Futures Market, Lebeau and Luca
Published in October/November 2001

Interviews with Developers 273

www.fx1618.com



out looking at an entire system. And, trading is not for everyone. Don’t be
afraid to quit if you don’t like it. If after six months you find you cannot make
money consistently, don’t even consider making it into a business.

What do you think the hot markets and stocks are this year?

S&P, NASDAQ, and all the major market indexes. I think we have a very
volatile big year ahead.

How do you prepare for your trading day?

No special warm up, but start the day knowing you are going to follow your
trading system rules. Rule #1—Do the right thing during the day so you don’t
have to stay up all night worrying about the mistakes you made during the day.

Do you think there is a future in technical stock trading systems?

The markets are traded technically so there is no difference in a stock system
versus a futures system. As far as development is concerned, I think, most every
algorithm has been tried and developed but there is a possibility someone
could come up with a new one. As far as popularity is concerned, the markets
are traded technically and trading systems will always be around. Practically no
one can beat the odds of a mechanical trading system—even a mediocre one.

Do you consider them (stock systems) a viable way to trade stocks successfully?

Yes, a system that works on futures should work on stocks because a chart is a
chart is a chart! The system does not care what it is being applied to.

Are you working on any new projects that you can tell us about?

Yes, we just released our like Java Signals, which is our ETS Signals on very
fast tick charts. It would be impossible for us to send out fast day trading sig-
nals manually so we have automated ETS into a Java version and made it avail-
able to all those on the Web. There is a free trial at www.traderssoftware.com.
Also using the latest technology, we have developed a Live Squawk Box for the
S&P Futures at Realtimefutures.com. The squawk box is totally live and an
invaluable trading tool.

Who do you admire in the industry? Why?

This is a hard question. No one in particular except other advisors like myself
that have the guts to pull the trigger on signals that are traded by hundreds of
traders. We know that you can’t judge a system by its performance on any one
day, but we know that if traded consistently over time, our systems outperform
and make money.

274 Building Winning Trading Systems with TradeStation

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



What led you to trading systems development?

My basic interest in the markets, my technical computer skills, and in 1990
when TradeStation became available—because it allowed someone like
myself who was not a programmer by trade to automate my trading research
and discoveries.

You must be very busy. Does futures trading and programming ever interfere
with your personal life?

I try not to let this happen. Too much of anything is not good and this is true
of trading as well. Leave yourself time for leisure.

Do you have any other commentary you would like to share with Futures
Truth readers?

Yes, Futures Truth results are great for traders to look at. But, make sure you
also like the strategies used in the systems you choose to trade. Just because a
system tests well and is ranked #1 doesn’t mean you will like it. Always find out
what type of methodology is used in the system and make sure it is consistent
with your personality and overall risk tolerance.

Interviews with Developers 275

www.fx1618.com



A TALK WITH LARRY WILLIAMS

by Rob Keener

Larry Williams is a seasoned trader with over 32 years of experience. He has
authored several best-selling trading books. Mr. Williams also won the Rob-
bins World Cup Trading Championship by actually trading $10,000 to
$1,100,000 in one year. He is a frequent speaker at seminars where he places
real-time trades in front of the audience and gives away the profits!

How do you prepare for your trading day? Understanding that trading is a
strenuous day-to-day business, is there any ritual?

I don’t think it’s all that stressful frankly as long as I know where my stops and
my entries are. I know the worst thing that can happen and I’ve already
accepted that can take place and probably will. So where’s the stress? I think it’s
something we induce in ourselves by worrying about every tick and price. I fig-
ure I’m not going to worry, it’s just going to happen.

So, you don’t do Yoga?

No, I come to the markets with a pretty basic approach. A lot of commod-
ity traders get beat up on occasion, not rare occasions, but frequently. So, I
just have accepted that, I think it’s the acceptance of it that gets rid of the
stress.

Do most people create failure in their trading strategies? Is it that they don’t
just go ahead and accept the risk and understand that there is stress involved?

Yes! They don’t place stops. So of course they’re stressed because they don’t
know what’s going to happen to them.

So they are taking the first profit and letting the losers run?

Yes or they don’t even have a target or a stop. They don’t know what to do.
They don’t have any rules. Any situation whether it’s life or it’s the markets, if
you don’t have any rules, you’re going to create insanity real quick.

Do you think it’s possible to use a pure systematic approach without any dis-
cretion at all?

Sure it’s possible and I’ve gone through that where I’ve traded purely system-
atically. I think that on occasion you can make a judgment call because the
future is never like the past and all of our systems are based on the past and
things do change. There is a point where you can use some discretion in the
market not a lot. If you need to make a judgment call, then that’s ok to do that,
just don’t do it everyday because then you don’t have a system.

276 Building Winning Trading Systems with TradeStation

www.fx1618.com



Are you constantly developing systems or do you have four or five concepts that
you follow?

I’ve got about four concepts. I just keep going down those same tunnels look-
ing for some cheese. My mind is in one mode. I keep mining the same
approaches.

Do you think there is an advantage in diversification? (You can diversify over
time, markets and strategies.)

I don’t like to diversify. If you have a trend-following system that catches
trends, you probably need some diversification. I just trade S&P’s and bonds.
That’s it, nothing else. I have some stuff that’s held up pretty well after a long
time period so I’m just going to trade that. My only diversification would be
various entry techniques.

Where do you think it’s all going? I talked to a floor trader that trades in the
S & P pit for a bank and he was concerned, a lot of guys in Chicago are wor-
ried that the pits are not going to be around forever.

When you look across the world you see the Sydney Futures Exchange has
gone electronic, it’s happened in Europe; my prediction is that the Chicago
Board of Trade is going to become a very nice shopping center. There will be
some warehouse full of computers and that will be the future of the commod-
ity exchange.

So you have four or five different basic systems?

I use approaches. I use volatility break out. I use pattern recognition. I use a lit-
tle momentum and I rely a lot on the fundamental set ups of the market.

Do you have a mechanism that you screen for potential set ups and then you
go in with discretion?

Not much discretion, it’s pretty clear-cut. Like today, I had a specific buy at
yesterday’s high and when the price went to that point the signal said to go
long, so I went long.

What kind of stop do you put on that?

Stops are interesting. What I’ve found to be the best type of stop, it’s not some
magical price point. I don’t believe that. That’s a bunch of bunk. I think the pur-
pose of the stop is to protect your equity. My stops are based on dollar amounts.
I know that I cannot lose more than x number of dollars, I don’t care if there’s
a chart point real close or if that supposedly valid chart point is a mile away. It’s
not about my money, my money can only be protected absolutely, and it’s much

Interviews with Developers 277

www.fx1618.com



more than a dollar stop than some mystical number. If I say I can only risk x
number of dollars it’s the fact that I can only lose x number of dollars.

Would you ever use something like the range of the market?

I would default to either the range or a volatility type of stop or x dollars. I can’t
go beyond x dollars. With a volatility stop you might have a stop that’s so gar-
gantuan that you get a huge loss, so you will default to x dollars.

What data format are you using with that?

I’m lying to my data so it looks like its twenty-eight years ago. At some
point I’ll get either TradeStation or I hear there is some other software com-
ing out. I’ll have to adjust. There’s a lot to system writer, it does so many won-
derful things that other software doesn’t do.

Have you ever had any situations where you felt like being able to move the
market was an advantage?

No. In the old days when I started trading stocks, the really, really old days in
the sixties, the early sixties, if I would put a recommendation on the hotline, it
could move the market, but there’s no advantage to it because it becomes a blip
in price.

You have to support it?

Right, it’s an aberration and somebody’s going to come in on the other side
and say I’m selling. No advantage in that!

Imagine someone came up to you and said, “I want to become a money man-
ager.” What kind of advice would you give them?

I’d tell them to think long and hard about it because you have to have so many
regulations. You have to have a personality for it. I don’t have a personality that
justifies existence with the United States government and regulatory bodies,
accountants and lawyers. That’s just not me. I’m not interested in that, but
somebody that is and has that business background, which I don’t have, it may
be a good business but you better have a system, you better have a good modal-
ity to trade from. The first thing is, do you have the wherewithal to deal with
bureaucrats?

So, the people that want to know about their money are a factor too?

Well, and you have to be a salesman, you have to be able to go out there and
shuck and jive people and you have to keep their money and you have to work
with brokerage firms. To me it’s simpler and cleaner just to trade. I’ll never
make as much money as John Henry or Paul Tudor Jones. These guys have

278 Building Winning Trading Systems with TradeStation

www.fx1618.com



amassed major fortunes that will last for generations. They have those skills. I
don’t have those skills. I barely have enough skills to trade, let alone run a
major business.

So, you basically stick to bonds and S&P’s, you’re not thinking of switching to
ten year’s?

Doubt it, that’s just for my own trading remember, when I do seminars or hot-
lines I’ll talk about other markets and a longer-term approach than my own
trading. The Ten Year looks like it’s starting to pick up some volume. So
you’re going to have to take a look at it and see what’s going on.

Do you think the arbitrage is bringing prices to where they are in check?

I just think my big deal is that you have to be where all of the speculative wave
is. In the mid-eighties that wave left T-bills and went to Treasury Bonds. T-
bills are what we traded back then. You have to watch the volume and see
where everybody is. Where the party is, that’s where I’m going.

What about the gold rush of the Nasdaq and everybody jumping on the band-
wagon trading stocks? In your opinion is it easier to trade the S&P’s?

The NASDAQ has been so wild! I would prefer to trade the S&P. It’s proba-
bly a little tamer, but it’s still wild, it’s not a tame market by any stretch of the
imagination but it’s not as wild as the Nasdaq.

Are you developing any stock trading systems?

We have stock trading research. The latest thing I’ve been working on is a sen-
timent index for all stocks that have options on them. It’s really cool. We’ve
gone in to web pages and polled advisors to see what the consensus is. It’s like
market mayhem for commodities. We have that for stocks.

Are you going to do that on your ctiming.com site?

I don’t know what’s going to happen with it. I think Genesis Data will proba-
bly distribute it or Bloomberg.

Is that similar to a strategy using options where you want to own a stock at a
certain price?

No, it’s just an indicator. If a vast majority of advisors are either bullish or bear-
ish we take the other side. These guys have a great record of being wrong.

So that’s really your selection process?

Yes, and it’s a great one.

Interviews with Developers 279

www.fx1618.com



Once you establish the selection process, then you go in with a momentum
indicator or something similar?

Exactly!

Do you use the same money management techniques for a stock system as you
do for futures?

You have to look at your equity and what your potential risk is and how much
damage can be done. You know if you’re going to get into a fight, you better
see how much the guy can hurt you.

What do you tell a guy that comes up to you at the seminar and says how do I
get started doing this?

You better read a bunch of books, start to paper trade first, they never want to
paper trade, they think it’s not the same as real trading and that’s true. You
know what? When guys go to medical school, I love to ask this question to
doctor’s in my audience, how many of you started to do surgery your first day
of medical school? They have cadavers until their second or third year. We
need some cadavers here to operate on and then see if this is for you. But to
just rush in because you’re smart and you made a bunch of money in your
business or you got it from your parents or you inherited it, that’s no reason
to trade. You better learn the basics of this business before you start risking
real money and that’s the cool thing, you can do that! You can actually start
to paper trade and see if this stuff fits you. Most people want to rush on in.
This is the fast lane, fast track stuff you can get hurt doing this big time. So,
I’d say go-slow.

Do you use the same approach to explain to somebody that this is just a day-
to-day business? I talked to Miles and he said you guys are in there at five
o’clock in the morning and we’re on east coast time but it’s still eight o’clock
and you know, it’s everyday. Do you try to stress that to people also?

Well, yeah, I think there’s a lot of swash buckler’s that have walked into this
business and they think you can sit and stare at a quote machine and make
money and it’s work and you have to be alert and you have to come in, this
is not nirvana, this is not an easy path to instant wealth. It sure beats the
heck out of having a job or having a boss! It still has its up days and its down
days. I’ve never yet found a way to make money where it’s just real easy,
where you never have to work or sweat about it, never have found that in my
life, you’re not going to find that I don’t think and commodity trading is no
different.

280 Building Winning Trading Systems with TradeStation

www.fx1618.com



How much longer are you going to do it?

I enjoy this so much. I’ll probably be trading for my entire life. To what point
I remain a public figure is undetermined. I’ve started to back out of that a lit-
tle bit. Miles Dunbar is taking over my newsletters. He’s doing more and more
all of the time and I’m doing less and less. At least that’s the goal. At some point
I need to fade into the woodwork. There are a lot of bright guys like Miles
coming up that will blow me away. You know it’s sad to see an athlete per-
forming past his prime and this is no different.

Who do you see as the guys stepping up to fill in your shoes? It doesn’t seem
like there’s anyone like John Hill and yourself. You guys are huge in the
industry.

That’s an interesting point. It could be because guys like John and I literally
traipsed around this country lecturing and talking about commodities for so
long, it’s so ingrained in us. The new breed is highly computer, electronic,
and stock oriented. They may not have the depth that guys like John have,
of knowing what a soybean is, how gold is mined, and that may make a dif-
ference. Everybody has become so electronic, we old timers may have a lit-
tle better understanding of things, you look at the money managers and
there is some new blood coming up, it intrigues me how many of those peo-
ple if you look at what their doing, they’re doing things that John Hill was
doing twenty, thirty years ago. They have a little variation and a little dif-
ferent insight, but they are not too far from where John and I have been all
of these years.

So, really there’s one way to do it, and if you can follow the path and stick with
it you will be successful. Do you think adjusting your psychological makeup to
be able to handle losses and let the winners run is the crux?

I think a lot of it is establishing your parameters. If you know going into trade
how bad the loss can be, you can play the game. If you try and play football and
it’s not one hundred yards to the touchdown, sometimes it’s ninety-five
and sometimes it’s a hundred and ten and sometimes there are boundaries and
sometimes there aren’t and sometimes there are penalties and sometimes there
aren’t. You will create insanity because people don’t have a clue between what
is right and wrong. Then they think, I know what, it’s me, I need to go see a
shrink, so, somebody does a psychobabble number on them. The reality is that
if you have a relatively decent approach and you realize that the market’s
not perfect and you are never going to be right all of the time and you just
accept that and you have basic rules, then I think you might be a trader. Peo-
ple have these unreal expectations that you can call the market as W.D. Gann
supposedly did, though he didn’t. We have evidence of that all over the place.

Interviews with Developers 281

www.fx1618.com



If that is your expectation and since you can never meet that expectation you’ll
go berserk as a trader. But if you just realize, hey this is a business of ups and
downs, it’s just like somebody that buys sweaters in the store and some of the
sweaters sell and some of them don’t sell. You have to take care of those losses,
this is a business.

282 Building Winning Trading Systems with TradeStation

www.fx1618.com



283

APPENDIX

A
EasyLanguage Syntax Errors

Syntax errors are produced when verifying an EasyLanguage statement that is not under-
stood or expected by the PowerEditor. Following is a list of all syntax errors and their de-
scription, listed by error number. Each entry includes the description of the error, 
probable causes of the error, and examples of the correct and incorrect syntax for the 

offending statement or instruction (where applicable). 

61 "Word not recognized by EasyLanguage."

This error is displayed whenever a word is not recognized by the PowerEditor. For exam-
ple, if it is not an EasyLanguage reserved word; EasyLanguage function, or a declared user 
defined variable, array, or input name.

62 "Invalid number."

The PowerEditor displays this message whenever it finds a typographical error in a num-
ber. For example, if a letter is inserted by mistake in a number, the number will be high-
lighted and this error will be displayed. An example of an invalid number is 100.b4.

63 "Number out of range."

The PowerEditor displays this error whenever it finds a number that is outside the support-
ed range (a number which is too big). The following statement will produce this error:

Value1 = ;

65 "Invalid variable name."

The PowerEditor displays this error whenever it finds an invalid name in a variable dec-
laration statement. Variable names cannot start with a number nor any special character 
other than the underline (_).

For example, this error will be generated when the following statement is verified:

Variable: (0);

66 "Invalid input name."

The PowerEditor will display this error whenever it finds an invalid name in an input dec-
laration statement. Input names cannot start with a number nor any special character other 
than the underline (_).

For example, this error will be generated when the following statement is verified:

Input: (0);

99999999999999999999

$MyVariable

$MyInput

www.fx1618.com



70 "Array size cannot exceed 2 billion elements."

Arrays can have up to 2 billion elements. The number of elements is calculated by multi-
plying all the dimensions of the array. For example, an array declared using the following 
statement will have 66 elements:

Array: MyArray[10,5](0);

This arrays will have rows 0 through 10 and columns 0 though 5; in other words, 11 rows 
and 6 columns. The resulting number from multiplying the dimensions of the array can’t 
exceed 2 billion.

74 "Invalid array name."

The PowerEditor displays this error whenever it finds an invalid name in an array decla-
ration statement. Array names cannot start with a number nor any special character other 
than the underline (_).

For example, this error will be generated when the following statement is verified:

Array: [10](0);

90 "The first jump command must be a begin: (\\hb,\\pb,\\wb)"

This error is displayed when the PowerEditor finds an end jump command without a begin 
jump command in a text string. The end jump commands are:

\he

\pe

\we

Before these commands, a begin jump command must be used. 

Note: when specifying a file name for the Print() or FileAppend() words, files that start 
with any of the jump commands will produce this error. So a file name “c:\hello.txt” will 
produce this error as part of the name \he.

91 "You cannot nest jump commands within other jump commands."

Jump commands are used in commentary-related text string expressions to highlight 
words, and create links to the on line help. Jump commands cannot be nested; that is, there 
cannot be multiple starting jump commands without having matching end jump com-
mands.

$MyArray

284 EasyLanguage Syntax Errors

92 "You must terminate all jump commands with ends (\\he,\\pe,\\we)"

This error is displayed when the PowerEditor finds a begin jump command without an end
jump command in a text string. The begin jump commands are:

\hb

\pb

\wb

After these commands, an end jump command must be used. 

Note: when specifying a file name for the Print() or FileAppend() words, files that start 
with any of the jump commands will produce this error. So a file name “c:\hello.txt” will 
produce this error as part of the name \he.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



151 "This word has already been defined."

User defined words (such as variables, arrays, and inputs) need to have unique names. This 
error is generated when a user defined word is defined more than once, such as in the fol-
lowing example:

Input: vac(10);

Variable: (0);

154     "=, <>, >, >=, <, <= expected here."

This error is displayed when the PowerEditor evaluates complex true/false expressions 
and it finds an error within the expression. 

Condition1 = Condition2 = Close

The intention of this statement was to assign a complex true-false value to the variable 
Condition1, by using Condition2 and a comparison that involves the Close. A 
corrected version would look like this:

Condition1 = Condition2 AND Open = Close;

155     " ’(’ expected here."

The left parenthesis was expected before the highlighted word; for example, if you are us-
ing a function that requires parameters, and no parameters are listed.

Value1 = Average  10;

In this example, the highlight signifies that a parenthesis was expected before the ‘+’
sign.

vac

;

+

EasyLanguage Syntax Errors 285

156      " ')' expected here"

The right parenthesis was expected after the highlighted word; for example, if you are us-
ing a function that requires parameters, you must enclose them in parentheses.

Value1 = Average(Close, 10

Here, the highlight signifies that a closing parenthesis was expected before the‘;’

157 "Arithmetic (numeric) expression expected here."

This error is displayed whenever the PowerEditor is expecting a number or a numeric ex-
pression and it finds a true-false expression, string value, or any other keyword that does 
not return a numeric expression. For example, the Average() function expects two numeric 
expressions, so the following:

Value1 = Average( , 10);

generates an error since Condition1 is a true-false expression.

;

Condition1

www.fx1618.com



158 "An equal sign '=' expected here."

This error is displayed if the equal sign is omitted when assigning a value to a variable, 
array, or function (writing an assignment statement).  

For example, the following statement will cause an error:

Value1 ;

and would be corrected by adding an equal sign, as in:

Value1 = 10;

159 "This word cannot start a statement."

Not all words can be used to start a statement. For example, the data word Close cannot 
be used to start a statement. Usually, reserved words that generate some action are used to 
start statements such as Buy, Plot1, or If-Then.

160 "Semicolon (;) expected here."

All EasyLanguage statements must end with a semicolon. Whenever the PowerEditor 
finds a word or expression that can be interpreted as a new line, it will place the cursor 
before this expression and show this error. For example, the following statements will pro-
duce this error:

Value1 = Close + Open

Buy Next Bar at Value1 Stop;

Given that the word Buy is always used at the beginning of a statement to place a trading 
order, a semicolon is required after the Open.

10

|

286 EasyLanguage Syntax Errors

161 "The word THEN must follow an If condition."

This error is displayed whenever the word Then is omitted from a If-Then statement. The 
word Then must always follow the condition of the If-Then statement. The correct syntax 
for an If-Then statement is:

If Condition1 Then {any operation}

162 "STOP, LIMIT, CONTRACTS, SHARES expected here."

This error is displayed by the PowerEditor if it finds a numeric expression following a 
trading verb without including one of the words listed above. A numeric expression can 
be used in a trading order to determine the number of shares (or contracts) and/or to spec-
ify the price of the stop or limit order. For example:

Buy Next Bar at Low - Range

is incorrect because it does not include a trading verb after the price Range. To be 
correct, you could add the word Stop or Limit, as in:

Buy Next Bar at Low - Range Stop;

;

www.fx1618.com



163 "The word TO or DOWNTO was expected here."

This error is displayed whenever writing a For loop and the word to or downto is omitted. 
The correct syntax for a For loop is:

For Value1 = 1 To 10 Begin

{statements}

End;

165 "The word BAR or BARS expected here."

This error is displayed whenever referencing to a value of a previous bar where the word 
Bar is omitted. For example, the following statement will cause this error:

Value1 = Close of 10 ;

The correct syntax is:

Value1 = Close of 10 Bars Ago;

166 "The word AGO expected here."

This error is displayed when the PowerEditor finds a reference to any expression for a 
number of bars ago without using the phrase Bars Ago. For example:

Value1 = Close of 10 Bars

produces this error because the word Ago is missing. The correct syntax for this expression 
is:

Value1 = Close of 10 Bars Ago;

Ago

;

EasyLanguage Syntax Errors 287

167 " ’}' was expected before end of file."

In order to add comments to your EasyLanguage, it is necessary to enclose the commen-
tary text in the curly braces ‘{’ and ‘}’. An error message is displayed when a left curly 
brace is found without a matching right curly brace. 

{ this was written by Trader Joe 

If Close > Highest(High, 10)[1] Then

Buy Next Bar at Market;

Above, the right curly brace was omitted somewhere before the vertical cursor. In this ex-
ample a right curly brace should have been placed after the word ‘Joe’.

168     " '[' was expected here."

When declaring, assigning, or referencing array values you are required to use the squared 
braces to specify the array element(s). This error is displayed if the left squared brace is 
not used when working with an array.

Array: MyArray 10);

For example, here the highlight shows that a squared brace, corresponding to the declared 
number of array element, is expected before the parenthesis.

|

(

www.fx1618.com



169     "']' was expected here."

When working with bar offsets or arrays, the bar or array index must be enclosed in 
squared braces. This message is displayed if the right squared brace is missing.

Value1 = Close[10 * 1.05

In this example, the highlight indicates that a squared bracket should be placed somewhere 
before the semicolon. Note that since the PowerEditor is expecting a numeric value in the 
squared braces, it places the highlight after the last character in a numeric expression. 
However, in this case, the right bracket was probably intended to be placed after the num-
ber 10.

170 "Assignment to a function not allowed."

This error is displayed when you attempt to assign a value to a function. By definition, a 
function is an EasyLanguage procedure that returns a value, so it is not possible to assign 
a different value to a function (except when returning a value from within a function). 

 = 100.1245;

In this example, the highlighted function name indicates that you cannot assign it a value.

;

Average

288 EasyLanguage Syntax Errors

171 "A value was never assigned to user function."

By definition, a function is a set of statements that return a value. This error will be dis-
played when editing or creating a function and the PowerEditor finds that no value has 
been assigned to the function. A statement similar to the following must be included in 
every function:

 = Value;

where MyFunction is the name of the function and Value is the expression to be returned 
when the function is referenced.

172 "Either NUMERIC, TRUEFALSE, STRING, NUMERICSIMPLE, NUMERICSERIES, 
TRUEFALSESIMPLE, TRUEFALSESERIES, STRINGSIMPLE, or STRINGSERIES expected."

When declaring the inputs in a function it is necessary to specify the type of each input. 
This error is generated when any word or value, other than a valid input type, is used when 
declaring function inputs.

174     "Function not verified."

In order for an analysis technique to verify, all functions used by the analysis technique 
must be verified as well. This error is displayed if there is a function that is not verified 
and you attempt to verify the analysis technique.

In order to solve this, open the function and verify it, or run “Verify All” from the Pow-
erEditor menu.

175     " ',' or ')' expected here."

This error is displayed when listing a number of elements in parentheses and a semicolon 
is read before the list is finished.

Value1 = Average(Close, 10

In this case, the highlight indicates that either more parameters (separated by a comma) or 
a right parenthesis were expected before the semicolon.

MyFunction

;

www.fx1618.com



176 "More inputs expected here."

This error is displayed whenever referencing a function or an included strategy without 
specifying enough inputs. For example:

Value1 = Average(Close ;

displays an error because only one input is specified while the Average function requires 
two inputs: 1) the price to be averaged and 2) the number of bars. 

)

EasyLanguage Syntax Errors 289

177 "Too many inputs supplied."

The PowerEditor displays this error when too many inputs are supplied for a function. For 
example, the Average function requires only two inputs, so the following statement will 
produce this error:

Value1 = Average(Close, 10  5);

The correct syntax would be

Value1 = Average(Close, 10);

180 "The word #END was expected before end of file."

The compiler directive #END must be used to indicate the end of a group of statements 
included in the alert or commentary only section of an analysis technique. The alert and 
commentary compiler directives will allow certain instructions to be executed only when 
the alert or commentary is enabled.

181 "There can only be 10 dimensions in an array."

Arrays can have up to 10 dimensions. The correct syntax for creating a multi-dimensional 
array is:

Array: MyArray[10,10,10](0);

where this statement creates a three dimensional array of 11x11x11

183 "More than 100 errors.  Verify termination."

When the PowerEditor is verifying a document for correctness, it will continue to evaluate 
expressions until it finds 100 errors. These errors will be found in the error log once the 
verification process is finished. If the PowerEditor finds more than 100 errors it will stop 
the process and will display this message.

185 "Either HIGHER or LOWER expected here."

When specifying the execution instructions for an order in a strategy, it is possible to use 
the words or Higher and or Lower as synonyms to stop and limit. This error occurs when 
the word or is found in an order without the words Higher or Lower. The following is the 
proper syntax for this statement:

Buy Next Bar at Low - Range or Lower;

186 "Input name too long."

Input names in any PowerEditor analysis technique can be up to 20 characters long. This 
error is displayed by the PowerEditor whenever an input has a name that has more than 20 
characters.

,

www.fx1618.com



187 "Variable name too long."

Variable names can have up to twenty characters. This error is displayed whenever a vari-
able is declared with a name that contains more than twenty characters.

290 EasyLanguage Syntax Errors

188 "The word BEGIN expected here."

This error is generated whenever the PowerEditor is expecting a block statement. For ex-
ample, all loops require Begin and End block statements, so writing the following will 
generate this error:

For Value1 = 1 To 10 

    = Value10 + Volume[Value1];

The correct syntax is:

For Value1 = 1 To 10 Begin

   Value10 = Value10 + Volume[Value1];

End;

189 "This word not allowed in a strategy."

The word highlighted by the PowerEditor is not allowed in a Strategy.

190 "This word not allowed in a function."

The word highlighted by the PowerEditor is not allowed in a function. Words like Plot1,
Buy, SellShort, etc., are not allowed in functions.

191 "This word not allowed in a study."

The word highlighted by the PowerEditor is not allowed in a study. Words like Plot1, Buy,
SellShort, etc., are not allowed in studies.

192 "This word not allowed in an ActivityBar."

The word highlighted by the PowerEditor is not allowed in an ActivityBar study. Words 
like Plot1, Buy, SellShort, etc., are not allowed in ActivityBar studies.

193 "Comma (,) expected here."

Commas are used to separate elements in a list; for example when declaring multiple in-
puts or variables, or when listing the parameters of a function. 

This error will be generated whenever the PowerEditor finds two words, that seem to be 
part of the list, which are not separated by a comma. For example, in the following:

Inputs: Price(Close)  Length(10);

the comma after the first input is missing. The PowerEditor places the vertical cursor at 
the location where it was expecting a comma.

Value10

|

www.fx1618.com



EasyLanguage Syntax Errors 291

195 "Matching quote is missing."

All text string expressions need to be within double quotes. This error will be displayed 
whenever there are not matching quotes around a text string expression. For example, the 
following statement will produce this error:

Variable: Txt(“ ”);

Txt = 

because there is a missing quote to the right of the text expression. The correct syntax for 
this expression is:

Variable: Txt(“ ”);

Txt = “This is an example”;

197 "Strategy not verified."

In order for a trading strategy to verify, any strategies referenced by the trading strategy 
through the use of the IncludeStrategy reserved word must be verified as well. This error 
is displayed if you attempt to verify a trading strategy that references an unverified strat-
egy.

In order to solve this, open the referenced strategy and verify it, or run “Verify All” from 
the PowerEditor menu.

200 "Error found in function."

This error is displayed whenever verifying an analysis technique that refers to an unveri-
fied function. The only solution is to open the function, verify the function, and then return 
to the analysis technique.

201 "User function cannot refer to current cell of itself."

A simple function cannot refer to the same value of a function within its calculations. 
However, if defined as a series function, it can refer to a previous value of itself. For ex-
ample, the following simple function gives an error:

MyFunction =  + Volume;

because the calculation refers to the current value of the function. By setting the function 
Parameter to “Series”, the following becomes a valid expression that uses a function’s
previous value to accumulate the volume of the chart:

MyFunction = MyFunction[1] + Volume;

“This is an example;

MyFunction

204 "Orders cannot be inside a loop."

EasyLanguage does not allow trading orders to be placed inside a For or While loop. If the 
intention of placing an order inside a loop is to increase the number of shares or contracts 
that the strategy will handle, this can still be done by placing the calculation of the number 
of shares or contracts inside a loop and then using the resulting value in the order instruc-
tion after the loop is finished. For example,

While Condition1 Begin

   Value1 = <calculation of number of shares>;

End;

Buy Value1 Shares Next Bar at Market;

www.fx1618.com



205 "Statement does not return a value."

This error is displayed when attempting to return a value from statements not designed 
to return a value, such as those that set or change a value. For example:

Value1 = (High, Low, RightSide);

To correct this error, do not assign the expression to a variable:

AB_SetZone(High, Low, RightSide);

208 "CONTRACTS, SHARES expected here."

When writing an EasyLanguage statement to place an order, it is possible to specify how 
many contracts or shares the strategy should use to open (or exit) the position. This error 
will be generated by the PowerEditor whenever it finds a numeric expression after the 
trading verb that is not followed by the words Stop, Limit, or Higher, or or Lower. For ex-
ample:

 100;

generates an error because it is not clear if  ‘100’ is a part of the instructions to specify the 
number of shares or the execution instruction (the price at which the order should be 
placed). A correct statement might read:

Buy 100 Shares;

209 "Strategy name expected within quotes."

When specifying the name of an order, it must be enclosed within parentheses and double 
quotes. This error is displayed if the name is missing or not correctly provided. For exam-
ple, the following statement will cause this error:

Sell From Entry (  Next Bar at Market;

211 "Strategy cannot call itself."

A strategy cannot reference itself when using the IncludeStrategy reserved word.

AB_SetZone

Buy

)

292 EasyLanguage Syntax Errors

213 "Error found in strategy."

This error is displayed whenever verifying a strategy that contains the IncludeStrategy re-
served word which references a strategy that is not verified. The only solution is to open 
the unverified strategy, verify it, and then return to the original strategy.

214 "Colon (:) expected here."

EasyLanguage expects a colon to be used when declaring certain elements of the language 
like inputs, variables, arrays, and DLLs. In order to declare a new input, the word input 
should be followed by a colon, and then the list of input names. This error will be dis-
played whenever the colon is missing from this expression, for example:

Input (10);

Since there is no colon after the word ‘Input’, the word MyValue is highlighted and this 
error message is displayed. To correct the error, simply add a colon after ‘Input’:

Input: MyValue(10);

MyValue

www.fx1618.com



EasyLanguage Syntax Errors 293

215 "Cannot use next bar's price and close order in the same strategy."

EasyLanguage does not support using information from the next bar (the Date, Time, or 
Open) and placing an order at the close of the current bar in the same strategy. If the in-
structions are not related, they should be written as different strategies and merged using 
TradeStation StrategyBuilder.

The following produces an error because it includes a reference to the Open of Next Bar 
with a Close order for This Bar (current bar):

If Open of Next Bar > Price Then Buy This Bar on Close;

217 "Function circular reference found."

A circular reference is defined as two formulas that refer to each other in their respective 
calculations. This type of formula cannot be solved by EasyLanguage, so whenever a cir-
cular reference is found this error is displayed. 

For example, a circular reference can happen if you have a function A, which is defined as 
the value of the current bar of a function B plus 1, and the definition of the function B is 
the value of the current bar of A plus 1. In order to calculate the value of function A, the 
value of B is needed, but in order to calculate B, the value of A is needed. Therefore, it is 
not possible to obtain the values of these functions and this error occurs.

220 "Cannot anchor a global exit."

The price date of the bar where an entry order was placed can be accessed from an exit by 
using At$. This is only allowed when the entry order has a label and if the exit is tied to 
the entry. An error will be generated if the entry is not labeled or if the exit does not specify 
what entry it is attempting to close. For example, the following exit will cause this error:

If Condition1 Then

    (“MyEntry”) This Bar on Close;

Sell At$ Low - 1 Stop;

since the exit does not specify the name of a matching entry. The correct syntax is:

If Condition1 Then

Buy (“MyEntry”) This Bar on Close;

Sell From Entry (“MyEntry”) At$ Low - 1 Stop;

223 "A simple function cannot call itself."

Historical values of simple functions are not available to EasyLanguage, so referring to 
previous values of itself in its calculations is not allowed. If this is necessary, change the 
function to a series. 

MyFunction = [1] + Volume;

For example, if MyFunction is a simple function, the above reference to the value of
MyFunction of one bar ago is not allowed in this calculation.

Buy

MyFunction

www.fx1618.com



224 "Strategy name already used."

The PowerEditor does not allow the reuse of a name in two different orders. It is manda-
tory that all orders have a different name. The following SellShort statement produces this 
error:

If Condition1 Then

Buy (“MyStrategy”) Next Bar at Market;

If Condition2 Then

SellShort ( ) Next Bar at Market;

because both orders cannot have the same name.

226 "Next bar's prices can only be used in a strategy."

The Open, Date and Time of the next bar can only be referenced from a strategy; no other 
analysis has access to this information. 

“MyStrategy”

294 EasyLanguage Syntax Errors

227 "Default expected here."

When declaring an input in any analysis technique, you need to enclose the default value 
in parentheses. This error will be shown whenever there is no default value specified (the 
parentheses are empty). For example, the following is the correct syntax for declaring an 
input with the default value of 15:

Input: MyInput(15);

229 "Invalid initial value."

An initial value needs to be specified when declaring a variable or array. This initial value 
needs to be enclosed by parentheses and is used to 1) determine the type of the variable or 
array (numeric, true-false, or text string), and 2) assign the initial value of the variable or 
array on the first bar.

The correct syntax when declaring a variable is:

Variable: MyVariable(10);

where the initial value assigned to this variable is 10, which is a numeric value.

230 "Initial value expected here."

An initial value needs to be specified when declaring a variable or array. This initial value 
needs to be enclosed by parentheses and is used to 1) determine the type of the variable or 
array (numeric, true-false, or text string), and 2) assign the initial value of the variable or 
array on the first bar.

The correct syntax when declaring a variable is:

Variable: MyVariable(10);

where the initial value assigned to this variable is 10, which is a numeric value.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



EasyLanguage Syntax Errors 295

231 "Function has no inputs. Parenthesis not needed."

This error is shown by the PowerEditor when parentheses are used for a function which 
has no inputs. For example, the EasyLanguage function Range has no inputs, so the fol-
lowing statement:

Value1 = Range 10);

displays the error message and highlights the first parenthesis before the parameter.

232 "Matching left comment brace '{' is missing."

The PowerEditor displays this error whenever it finds a right comment brace “}” without 
a matching left comment brace. In order to fix this, find the beginning of the comment text 
and place a left comment brace before it. If there is no comment in your analysis technique, 
then remove the right comment brace.

(

233 "Extra right parenthesis."

When writing any type of expression or statement that requires parentheses, it is necessary 
to have matching left and right parentheses. This error is displayed if there are extra right 
parentheses in the expression being evaluated. For example:

Value1 = (Close + Open) /2

234 "END found without matching BEGIN."

This error is displayed whenever a block statement does not contain a matching End for 
every Begin.

237 "Position Information function not allowed in a study."

Strategy position information words can only be used in strategies and functions. This er-
ror will be generated if any one of these words are found in anything other than a strategy 
or function.

238 "Performance Information function not allowed in a study."

Strategy performance information words can only be used in strategies and functions. This 
error will be generated if any one of these words are found in anything other than a strategy 
or function.

239 "Array name too long."

Array names can have up to 20 characters. An error message will be displayed if the array 
name used in the declaration statement has more than 20 characters.

240 "This strategy name does not exist."

This error is displayed whenever tying an exit to a non-existent entry name. For example, 
the following strategy produces this error:

Buy (“Break”) Next Bar at Highest(High, 10) Stop;

Sell From Entry ( ) Next Bar at Low Stop;

because the exit incorrectly refers to an entry labeled “BreakOut” which does not exist in 
this strategy. Changing the entry name to “Break” will correct this error.

)

"BreakOut"

www.fx1618.com



241 "Cannot exit from an exit strategy."

This error is displayed when an exit strategy is mistakenly tied to another exit strategy. 
Exit strategies can only be tied to an entry through the use of the instruction from Entry 
(“entry name”). For example, the following statements will generate this error:

If Condition1 Then

Buy (“MyEntry”) This Bar at Close;

If Condition2 Then

Sell (“MyExit”) This Bar at Close;

Sell from Entry ( ) Next Bar at Lowest(Low,10) Stop;

Instead, the following statements are correct:

If Condition1 Then

Buy (“MyEntry”) This Bar at Close;

If Condition2 Then

Sell (“MyExit”) This Bar at Close;

Sell From Entry (“MyEntry”) Next Bar at Lowest(Low,10) Stop;

242 "Cannot BuyToCover from a buy strategy."

This error will be displayed when a short exit strategy is tied mistakenly to a long entry 
strategy. Short exit strategies can be tied only to a short entry through the use of the in-
struction from Entry (“entry name”). For example, the following statements will generate 
this error: 

If Condition1 Then

Buy (“MyEntry”) This Bar at Close;

BuyToCover From Entry ( ) Next Bar at Lowest(Low,10)

Stop;

In this case, the error can be corrected by using the appropriate exit instruction, Sell:

If Condition1 Then

Buy (“MyEntry”) This Bar at Close;

Sell From Entry (“MyEntry”) Next Bar at Lowest(Low,10) Stop;

“MyExit”

“MyEntry”

296 EasyLanguage Syntax Errors

www.fx1618.com



243 "Cannot Sell from a SellShort strategy."

This error will be displayed when a long exit strategy is tied mistakenly to a short entry 
strategy. Long exit strategies can be tied only to a long entry through the use of the instruc-
tion from Entry (“entry name”). For example, the following statements will generate this 
error: 

If Condition1 Then

SellShort (“MyEntry”) This Bar at Close;

Sell from Entry ( ) Next Bar at Low Stop;

In this case, the error can be corrected by using the appropriate exit instruction, BuyTo-
Cover:

If Condition1 Then

SellShort (“MyEntry”) This Bar at Close;

BuyToCover from Entry (“MyEntry”) Next Bar at Low Stop;

244 "At$ cannot be used after the word TOTAL."

EasyLanguage does not allow the reserved word Total to be tied to reference information 
from the bar of entry by using the AT$ instruction. For example, the following statement 
will generate this error:

Sell 20 Shares Total From Entry (“MyEntry”)  Low Stop;

247 "References to previous values are not allowed in simple functions."

Prior values of simple functions, simple variables, or simple expressions cannot be refer-
enced from within simple functions. If this is necessary for the calculation of a function 
then the function must be set as series, not simple. This incorrect example:

  MyFunction = MyFunction[1] + Close;

creates an error if MyFunction is a simple function with a reference to previous values 
of itself. Setting the function Properties to “Series” will correct this error.

250 "Cannot reference a previous value of a simple input."

Historical values of simple inputs in functions are not stored by EasyLanguage, so refer-
ring to previous values of them is not allowed. For example, in the following:

Input: MyVal(NumericSimple);

MyFunction = MyVal[5];

the value MyVal[5] is not allowed in this function since it includes a reference to the value 
of the input of five bars ago but is declared as a NumericSimple input. If the reference to 
a previous value is necessary, change the input type to series.

“MyEntry”

At$

EasyLanguage Syntax Errors 297

251 "Variables and arrays not allowed here."

In previous product versions this error is displayed when attempting to pass variables 
or arrays to series functions. 

Value2 = Average(Close, Value1);

www.fx1618.com



253 "Cannot reference a previous value of this input."

Historical values of simple inputs in functions are not stored by EasyLanguage, so refer-
ring to previous values of them is not allowed. For example, in the following:

Input: MyVal(NumericSimple);

MyFunction = MyVal[5];

the value MyVal[5] is not allowed in this function since it includes a reference to the value 
of the input of five bars ago but was declared as a NumericSimple input. If the reference 
to a previous value is necessary, change the input type to series.

258 "Variables, arrays and inputs not allowed here."

This error is displayed when a variable, array, or input is used as the initializer for an 
input value, such as:

Vars: MyVar(3); 

Input: MyInput( );

259 "This number is too big."

The PowerEditor displays this error whenever it finds a number that is outside the support-
ed range (a number which is too big). The following statement produces this error:

Value1 = ;

260 " ’Next Bar’ can only be applied to ’OPEN’, ’DATE’ and ’TIME’."

The only prices available from the next bar that can be read from a strategy are Open, 
Date, and Time. All other prices from the next bar can’t be accessed. 

261 "The word 'BAR' expected here."

This error is shown whenever writing an order in a strategy where the word Bar is left out 
of the expression. For example, the following:

 Next on the Close;

generates an error because Bar is missing. The correct syntax is:

Buy Next Bar on the Close;

MyVar

99999999999999999999

Buy

298 EasyLanguage Syntax Errors

262 "At market order can only be placed for the next bar."

All analysis techniques are read and executed at the end of each bar. Because of this, mar-
ket orders can only be placed for the next bar. An error will be generated whenever a mar-
ket order is placed to be filled on this bar, such as:

 This Bar at Market;

263 "Stop and limit orders can only be placed for the next bar."

This error is displayed when trying to write a stop or limit order for the current bar. 
For example:

Buy This Bar at Low - Range ;

is not correct because a Limit order cannot be placed on This Bar. To be correct, the 
Limit order must be on the Next Bar:

Buy Next Bar at Low - Range Limit;

Buy

Limit

www.fx1618.com



264 "On close order must be placed for this bar."

Given that all instructions are read at the close of each bar, the only types of orders that 
can be placed on the current bar are at the close. Whenever This Bar is included as part of 
an order it may only refer to the at Close price. The correct syntax for This Bar orders is:

Buy This Bar at Close;

265 "Cannot mix next bar prices with data streams other than data1."

EasyLanguage prohibits the reference of secondary data streams in the same strategy 
where references to the Date, Time, or Open of the next price are also made. If the refer-
ences to a secondary data stream and the next bar prices are not directly related, it is rec-
ommended that you write two strategies, one that uses next bar prices and a second that 
references other data streams.

For example, the following statements included in one strategy are not allowed because 
they reference two different data streams (Data1 by default is the first and Data2 in the 
second):

If Open Next Bar > High Then

   SellShort Next Bar at Open Next Bar + Range Limit;

If Average(Close, 4) of Data2 < Average(Close, 7) of Data2 Then

BuyToCover Next Bar at Close;

Instead, writing two different strategies, one containing the first IF-THEN statement and 
another containing the second IF-THEN statement is necessary. Later these strategies can 
both be included as part of the same Trading Strategy by adding them to the same Chart 
Analysis window.

EasyLanguage Syntax Errors 299

266 "Library name within double quotes expected here."

The PowerEditor displays this error when defining an external DLL function and the name 
of the DLL is missing or incorrect. The first element of the list of parameters in the 
DefineDLLFunc statement should be the name of the DLL library within double quotes. 
The following statement will generate this error:

DefineDLLFunc: , “MyFunc”, int;

The correct syntax for this statement is:

DefineDLLFunc: “MyDLL”, int, “MyFunc”, int;

267 "DLL function name within double quotes expected here."

When defining a function from a DLL, the name of the DLL must be enclosed in double 
quotes. For example, the following is a proper example of such a function definition be-
cause it includes the function name “user.dll” followed by DLL’s return type and param-
eters:

DefineDLLFunc: “user.dll”, int, “beep”;

274 "Return type of this DLL function must be specified."

When declaring a DLL function, the return type of the function must be the second param-
eter listed. Following is a correct DLL function declaration statement with the DLL’s type 
int following the DLL name:

DefineDLLFunc: “MyDLL.DLL”, int, “MyFunction”, int;

int

www.fx1618.com



276 "DLL name cannot be longer than 60 characters."

The name of the DLL used to define any function through the DefineDLLFunc statement 
cannot exceed 60 characters.

277 "DLL function name cannot be longer than 65 characters."

The name of a function defined using the DefineDLLFunc statement cannot exceed 65 
characters. 

278 "A variable expected here."

Whenever the PowerEditor expects a variable and finds another reserved or user defined 
word, it will highlight the unexpected word and give this message. An example is when a 
function is expecting a variable as one of the parameters (because it is expecting to receive 
the variable by reference).

300 EasyLanguage Syntax Errors

279 "An array expected here."

Functions can now receive arrays as parameters. If a function is expecting an array and 
instead the PowerEditor finds a variable, input, or other reserved word (different than an 
array), it will display this error. In the following example the function Average_a() calcu-
lates the average of a particular array, so the following will generate the syntax error:

Variable: MyVar(0);

Value1 = Average_a( , 10);

To correct this problem, you need declare MyVar as an array instead of an integer. It 
should be written:

Array: MyArray[20](0);

Value1 = Average_a(MyArray, 10);

280 "TrueFalse expression expected here."

This error is displayed when the PowerEditor expects a true/false expression and finds a 
numeric or text string expression instead. For example:

Condition1 = High ; 

281 "Mixing data types (NUMERIC, TrueFalse, String) not allowed."

This error appears when incompatible data types are combined in a single expression. 

In this example:

Value1 = 100 + “12” ; 

the text string “12” cannot be directly combined with a numeric value. To resolve such a 
problem, use the appropriate EasyLanguage reserved word to convert the data to a com-
patible type.

For example, use the function StrToNum to convert the text string to a numeric value:

Value1 = 100 + StrToNum(“12”) ;

MyVar

www.fx1618.com



283 "Strategy has no inputs. Comma not needed."

When including a strategy through the IncludeStrategy keyword, the list of the inputs must 
be supplied and each input must be separated by a comma. This error is displayed if the 
strategy has no inputs, and an input is mistakenly included in the statement.

Following is the correct syntax of an IncludeStrategy statement of a strategy with no in-
puts:

IncludeStrategy: “My Trailing LX”;

284 "There is no such strategy."

This error is displayed by the PowerEditor whenever the strategy name referenced by an 
IncludeStrategy statement does not exist in the strategy library.

EasyLanguage Syntax Errors 301

285 "Strategy circular reference found."

A circular reference is defined as two formulas that refer to each other’s current bar value 
in their respective calculations. This type of formula cannot be solved by EasyLanguage, 
so whenever a circular reference is found this error is displayed. 

286 "Cannot divide by zero."

This error will be displayed when dividing any numerical expression by the literal number 
0. So when the following is written:

Value1 = Close / 0;

the PowerEditor will generate a syntax error because dividing by zero is a mathematical 
indetermination and cannot be solved.

287 "File name expected here."

This error is displayed when using the Print statement to send information to the printer, 
and an invalid file name is used for the file name. The file name should be specified as text 
between double quotes. Note that a text string expression will not be accepted as a file 
name in the Print statement. For example, the PowerEditor will display this error when 
evaluating the following statement:

Print(File( ), Date, Time, Close);

The file name needs to be text included in double quotes; for example:

Print(File(“c:\tradestation\test.txt”), Date, Time, Close);

288 "A file or directory name must be <260 characters and may not contain "/ : * ? < > |"."

Certain instructions like the Print() and FileAppend() statements require a file name. The 
file name needs to be less than 260 characters long and cannot have any of the characters 
listed in the error label. For example, this error will be displayed when writing: 

Print(File( , Date, Time, Close);

since the ‘?’ character is not a valid character and cannot be used as part of a file name.

Value1

“c:\data?.txt”

www.fx1618.com



291 "The word 'OVER' or 'UNDER' expected here."

This error is displayed whenever using the word Cross without Over or Under when writ-
ing a true-false expression. For example, the following expression will produce this error:

Condition1 = Close Crosses ;

The correct syntax would be:

Condition1 = Close Crosses Over Open;

Open

302 EasyLanguage Syntax Errors

292 "Two constants cannot cross over each other."

The PowerEditor displays this error whenever using the logical operators Crosses Over or 
Crosses Under compares two constants. Since they are constants, they will never cross 
each other and the statement will display an error, as in:

Condition1 =  Crosses Over 15;

293 "This plot has been defined using a different name."

The value of a plot can be assigned more than once within an analysis technique but it must 
always be referenced using the same name (or the name can be left out). For example, the 
following statement will cause this error:

Plot1( Volume, “Vol” );

If Volume > 1000000 Then

Plot1(Volume, , Red);

because the plot has been assigned a second name “V”. The correct way of writing this 
statement is:

Plot1( Volume, “Vol” );

If Volume > 1000000 Then

Plot1(Volume, “Vol”, Red);

295 "This plot name has never been defined."

This error is displayed whenever referencing a Plot with a different name than it was de-
fined with, or a plot that doesn’t exist. For example, the following statements will cause 
this error:

Plot1(High, “H”);

Value1 = Plot1 + ;

since Plot2 has not been defined. The PowerEditor highlights the second instance of the 
Plot command to indicate where the error occurred.

10

“V”

Plot2

www.fx1618.com



296 "This plot has never been assigned a value."

This error is generated when referring to the value of a plot that has not been previously 
defined in the analysis technique. For example, the following statements will produce this 
error:

Plot1( Average(Close,10) );

If Plot1 Crosses Over Then

Alert;

because Plot2 has not been defined.

Plot2

EasyLanguage Syntax Errors 303

297 "Server field name too long; cannot be more than 30 characters."

Server Quote fields can be up to 30 characters long. This error will be generated whenever 
a server field with a name that has more than 30 characters is used.

298 "Strategy Information (for plots) function not allowed in a strategy."

None of the “Strategy Information for plots” words can be used within a strategy. These 
words are designed to be used in other analysis techniques to refer to overall performance 
of the strategy. However, there are strategy-specific words that can be used from the strat-
egy to refer to these figures.

These words are:

I_AvgEntryPrice

I_ClosedEquity

I_CurrentContracts

I_MarketPosition

I_OpenEquity

299 "Strategy Information function not allowed in a study."

Strategy information words (other than the strategy information for plots) can only be used 
in trading strategies and functions. These words, which are listed in the EasyLanguage 
Dictionary under the categories Strategy Performance and Strategy Position, can only be 
used when writing trading strategies and functions. 

300 "This plot has been defined with a different type."

The value of a plot can be assigned more than once but it must always be of the same type. 
Plot statements can display numeric, true-false, and string expressions, but they cannot 
change types within an analysis technique. For example, the following pair of Plot state-
ments are not allowed in an analysis technique because they include different data types, 
where the first plot is a text string and the second a true-false value:

Plot1( "This is a text string");

If Condition1 Then

   (Condition1);Plot1

www.fx1618.com



303 "Extraneous text is not allowed after the array-type parameter"

When passing an array into a function, only the array name should be used. This error is 
displayed whenever any text, words, or braces are added after the array name that is passed 
to a function. For example:

Array: MyArray[10](0);

Value1 = Average_a(MyArray 0], 10);

the [ will be highlighted because an array index appears after the array name. The correct 
syntax would be:

Array: MyArray[10](0);

Value1 = Average_a(MyArray, 10);

304 "Numeric-Array Parameter expected here."

Functions can receive arrays as parameters. If a function is expecting an array, any other 
type of parameter (variable, input, or reserved word) will display this error. In the follow-
ing example:

Variable: MyVar(0);

Value1 = Average_a( , 10);

the function Average_a() requires an array on which to calculate an average and 
displays this error because MyVar is not an array.

Instead, you can write:

Array: MyArray[20](0);

Value1 = Average_a(MyArray, 10);

305 "TrueFalse-Array Parameter expected here."

Functions can now receive arrays as parameters. If a function is expecting a true-false ar-
ray and, instead, the PowerEditor finds a variable, input, or other reserved word (different 
than a true-false array), it will display this error. For example, a function MyTrueFalse_a() 
that correctly uses true-false arrays would be written as follows:

Array: MyArray[20](False);

Variable: MyTF(False);

MyTF = MyTruefalse_a(MyArray, 10);

[

MyVar

304 EasyLanguage Syntax Errors

302 "Different number of dimensions specified in the array than the parameter."

This error is shown when an array is passed into a function with the wrong number of di-
mensions. For example, this error will be generated if a function is expecting a single di-
mension array but is sent an array with two dimensions instead.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



EasyLanguage Syntax Errors 305

306 "String Array Parameter expected here."

Functions can now receive arrays as parameters. If a function is expecting an array of text 
strings and, instead, the PowerEditor finds a variable, input, or other reserved word (dif-
ferent than an array of text strings) it will display this error. For example, a function 
Average_a(), which combines all the text strings that are in an array into one, should be 
used as follows:

Array: MyArray[20](“ ”);

Variable: MyText(“ ”);

MyText = Average_a(MyArray, 10);

307 "The word 'Cancel' must be followed by 'Alert'."

Whenever canceling a previously enabled alert, the statement Cancel Alert needs to be 
used. This error is displayed whenever using the word Cancel without the word Alert.

314 "This word is only allowed in ActivityBar studies."

The words that are used to set the properties and draw ActivityBars are only allowed from 
ActivityBars and are not allowed in any other study or strategy.

323 "’Value-type inputs’ may not be passed into ’reference-type inputs’."

Functions can receive array and variable parameters by reference or by value. However, 
if a function receives a variable or array by value, it is not possible to pass the parameter 
to a second function by reference. If an input of a function needs to be passed by reference 
to another function, it must also be declared as a reference input.

325 "Only an array, variable, or reference-input is allowed here"

Functions can receive arrays as parameters. If a function is expecting an array, any other 
type of parameter (variable, input, or reserved word) will display this error. In the follow-
ing example:

Variable: MyVar(0);

Value1 = Average_a( , 10);

the function Average_a() requires an array on which to calculate an average and 
displays this error because MyVar is not an array.

Instead, you can write:

Array: MyArray[20](0);

Value1 = Average_a(MyArray, 10);

MyVar

340 "This word is only allowed when defining array-type inputs."

This error is displayed when creating a function input using any input-type (such as 
NumericArray, NumericArrayref) without fully qualifying the input with braces. For 
example, this creates an error:

Input: MyInput( );

because it does not include the array length parameter in brackets after the array name. 
The correct syntax would be:

Input: MyInput[n](StringArrayRef);

StringArrayRef

www.fx1618.com



341 "An array input word (NUMERICARRAY, STRINGARRAY, TRUEFALSEARRAY, 
NUMERICARRAYREF, STRINGARRAYREF, TRUEFALSEARRAYREF) was expected here."

When declaring inputs that are meant to receive an array, one of the above words is ex-
pected as the input type. For example, this error will be displayed when declaring an input 
for a function using the following statement:

Input: MyArray[M,N]( );

since the reserved word Numeric is not valid for declaring arrays. However, the following 
will verify successfully:

Input: MyArray[M,N](NumericArray);

342 "This word can only be used in a PaintBar study."

This error occurs when you use the reserved word PlotPaintBar when writing anything 
other than a PaintBar study.

396 "This statement cannot specify an odd number of plots."

This error is displayed when using the PlotPaintBar statement and specifying an odd num-
ber of plots. There are two possible uses for this statement, either specifying only a high 
and low value, or specifying high, low, open, and close markers. The correct syntax for 
the PlotPaintBar statement follows:

PlotPaintBar(High, Low, “PB”);

or

PlotPaintBar(High, Low, Open, Close, “PB”);

Numeric

306 EasyLanguage Syntax Errors

403 "Cannot implicitly convert String to Numerical"

Whenever the PowerEditor expects a numerical expression, and, instead, finds a text string 
expression, it will highlight the text string expression and display this message.

For example, the following statement will produce this error:

Variable: MyNumber(“55”);

Value1 = Close + ;

Instead, the following expression accomplishes the expected result because it first uses the 
keyword StrToNum() to convert a text string expression to a numeric value:

Variable: MyNumber(“55”);

Value1 = Close + StrToNum(MyNumber);

MyNumber

www.fx1618.com



EasyLanguage Syntax Errors 307

404 "Cannot implicitly convert String to TrueFalse"

Whenever the PowerEditor expects a true-false expression and, instead, finds a text string 
expression, it will highlight the text string expression and will display this message.

For example, the following statement will produce the error:

Input: Text1(“Yes”), Text2(“No”);

Condition1 = ;

because the input “Text1” was declared as a text value and cannot be assigned the true-
false variable Condition1. Instead, the following statement is correct:

Input: Text1(“Yes”), Text2(“No”);

Condition1 = (Text1 = Text2);

Notice that while both Text1 and Text2 are string values, the result of the comparison 
is a true-false value which is properly assigned to a true-false variable.

Text1

405 "Cannot implicitly convert TrueFalse to String"

Whenever the PowerEditor expects a text string expression and, instead, finds a true-false 
expression, it will highlight the true-false expression and display this message. In this ex-
ample, Condition1 is a true-false variable and cannot be directly combined with a string:

FileAppend(“Output.txt”, “This is a text string” + );

Instead, the following expression corrects the problem by creating a string value based on 
whether Condition1 is true or false:

Variable: txt(“ ”);

If Condition1 Then

   txt = “true”

Else

   txt = “false”;

FileAppend(“Output.txt”, “This is a text string” + txt);

406 "Cannot implicitly convert Numerical to String"

Whenever the PowerEditor expects a text string expression and, instead, finds a numerical 
expression, it will highlight the numerical expression and will display this message.

For example:

FileAppend(“Output.txt”, “This is text” + );

displays an error when a numeric expression is found. Instead, the following expression 
will accomplish the expected results because it uses the keyword NumToString() to 
convert a numerical expression to a string:

FileAppend(“Output.txt”, “This is text” + NumToStr(Value1, 2));

Condition1

Value1

www.fx1618.com



407 "Cannot implicitly convert TrueFalse to Numerical"

Whenever the PowerEditor expects a numerical value and, instead, finds a true-false ex-
pression, it will highlight the expression and will display this message.

For example, the following statement will produce this error because the Condition1 value 
is a true-false variable and cannot be assigned to the numeric variable Value1:

Value1 = ;Condition1

308 EasyLanguage Syntax Errors

408 "Cannot implicitly convert Numerical to TrueFalse"

Whenever the PowerEditor expects a true/false expression and, instead, finds a numerical 
expression, it will highlight the numerical expression and will display this message. For 
example, the following statement produces an error because the reserved word Open is a 
numeric value and not a true/false expression:

Condition1 = ;

Instead, assign the numeric value Open to the numeric variable Value1:

Value1 = Open ;

Or, change the statement such that it is a comparison. For example:

Condition1 = Open > Close;

Notice that while both Open and Close are numerical values, the result of the 
comparison is a true/false value, which is properly assigned to a true/false variable.

409 "String expression expected here"

This error is displayed whenever the PowerEditor is expecting a string expression and, in-
stead, it finds a numeric or true-false expression. For example, this error will be displayed 
when writing information to a file with a FileAppend statement:

FileAppend(“file.txt”, );

that includes the numeric expression Value1 instead of a text string. Numeric expressions 
can be converted to strings by using the NumToStr() keyword. For example:

FileAppend(“file.txt”, NumToStr(Value1,2)); 

569 "Buy or SellShort name within double quotes expected here."

When specifying the name of a trading strategy, only a text string literal can be used, and 
it can’t be substituted by a variable or an input. The following statements will generate this 
error:

Variable: txt(“MyStrategy”);

 (txt) Next Bar at Market;

while the correct way of assigning a name to a strategy is to use a literal string, such as:

Buy (“Strategy Name”) Next Bar at Market;

Open

Value1

Buy

www.fx1618.com



309

APPENDIX

B

TradeStation 2000i Source
Code of Select Programs

Bollinger Bandit {TradeStation 2000i Format}

Vars: upBand(0),dnBand(0),liqDays(50);

upBand = BollingerBand(Close,50,1.25);

dnBand = BollingerBand(Close,50,–1.25);

if(MarketPosition <> 1 and ExitsToday(date) = 0) then Buy("BanditBuy")tomorrow upBand 

stop;

if(MarketPosition <> –1 and ExitsToday(date) = 0) then Sell("BanditSell")tomorrow dnBand 

stop;

if(MarketPosition = 0) then liqDays = 50;

if(MarketPosition <> 0) then

begin

liqDays = liqDays – 1;

liqDays = MaxList(liqDays,10);

end;

if(MarketPosition = 1 and Average(Close,liqDays) < upBand) then ExitLong("LongLiq")

tomorrow Average(Close,liqDays)stop;

if(MarketPosition = –1 and Average(Close,liqDays) > dnBand) then ExitShort("ShortLiq")

tomorrow Average(Close,liqDays)stop;

www.fx1618.com



{Dynamic Break Out II by George Pruitt—
TradeStation 2000i Format

This system is an extension of the original Dynamic Break Out system written by George

for Futures Magazine in 1996. In addition to the channel break out methodology, DBS II

incorporates Bollinger Bands to determine trade entry.}

Inputs: ceilingAmt(60),floorAmt(20),bolBandTrig(2.00);

Vars: lookBackDays(20),todayVolatility(0),yesterDayVolatility(0),deltaVolatility(0);

Vars: buyPoint(0),sellPoint(0),longLiqPoint(0),shortLiqPoint(0),upBand(0),dnBand(0);

todayVolatility = StdDev(Close,30);

yesterDayVolatility = StdDev(Close[1],30); {See how I offset the function call to

get yesterday's value}

deltaVolatility = (todayVolatility – yesterDayVolatility)/todayVolatility;

lookBackDays = lookBackDays * (1 + deltaVolatility);

lookBackDays = Round(lookBackDays,0);

lookBackDays = MinList(lookBackDays,ceilingAmt); {Keep adaptive engine within bounds}

lookBackDays = MaxList(lookBackDays,floorAmt);

upBand = BollingerBand(Close,lookBackDays,+BolBandTrig);

dnBand = BollingerBand(Close,lookBackDays,–BolBandTrig);

buyPoint = Highest(High,lookBackDays);

sellPoint = Lowest(Low,lookBackDays);

longLiqPoint = Average(Close,lookBackDays);  {Exit long at 1/2 look back period}

shortLiqPoint = Average(Close,lookBackDays); {Exit short at 1/2 look back period}

if(Close > upBand) then Buy("DBS-2 Buy") tomorrow at buyPoint stop;

if(Close < dnBand) then Sell("DBS-2 Sell") tomorrow at sellPoint stop;

if(MarketPosition = 1) then ExitLong("LongLiq") tomorrow at longLiqPoint stop;

if(MarketPosition = –1) then ExitShort("ShortLiq") tomorrow at shortLiqPoint stop;

310 TradeStation 2000i Source Code of Select Programs

www.fx1618.com



{DBS II Fade by George Pruitt—TradeStation 2000i

This version of the DBS buys when the original DBS sold and sells when the original DBS

bought. We did this to illustrate the seasonal/cyclical nature of the soybeans}

Inputs: ceilingAmt(60),floorAmt(20),bolBandTrig(2.00);

Vars: lookBackDays(20),todayVolatility(0),yesterDayVolatility(0),deltaVolatility(0);

Vars: buyPoint(0),sellPoint(0),longLiqPoint(0),shortLiqPoint(0),upBand(0),dnBand(0);

todayVolatility = StdDev(Close,30);

yesterDayVolatility = StdDev(Close[1],30); {See how I offset the function call to

get yesterday's value}

deltaVolatility = (todayVolatility – yesterDayVolatility)/todayVolatility;

lookBackDays = lookBackDays * (1 + deltaVolatility);

lookBackDays = Round(lookBackDays,0);

lookBackDays = MinList(lookBackDays,ceilingAmt); {Keep adaptive engine within bounds}

lookBackDays = MaxList(lookBackDays,floorAmt);

upBand = BollingerBand(Close,lookBackDays,+bolBandTrig);

dnBand = BollingerBand(Close,lookBackDays,–bolBandTrig);

buyPoint = Highest(High,lookBackDays);

sellPoint = Lowest(Low,lookBackDays);

longLiqPoint = Average(Close,lookBackDays);  {Exit long at 1/2 look back period}

shortLiqPoint = Average(Close,lookBackDays); {Exit short at 1/2 look back period}

if(Close > upBand) then Sell("DBS-2 Buy") tomorrow at buyPoint limit;

if(Close < dnBand) then Buy("DBS-2 Sell") tomorrow at sellPoint limit;

if(MarketPosition = 1) then ExitLong("LongLiq") tomorrow at longLiqPoint limit;

if(MarketPosition = –1) then ExitShort("ShortLiq") tomorrow at shortLiqPoint limit;

TradeStation 2000i Source Code of Select Programs 311

www.fx1618.com



{King Keltner Program

King Keltner by George Pruitt—based on trading system presented by Chester Keltner—

an example of a simple, robust and effective strategy.}

Inputs: avgLength(40),atrLength(40);

Vars: upBand(0),dnBand(0),liquidPoint(0),movAvgVal(0);

movAvgVal = average((High + Low + Close)/3.0,avgLength);

upBand = movAvgVal + AvgTrueRange(atrLength);

dnBand = movAvgVal – AvgTrueRange(atrLength);

{Remember buy stops are above the market and sell stops are below the market—

if the market gaps above the buy stop, then the order turns into a market order 

vice versa for the sell stop}

if(movAvgVal > movAvgVal[1]) then Buy ("KKBuy") tomorrow at upBand stop;

if(movAvgVal < movAvgVal[1]) then Sell("KKSell")tomorrow at dnBand stop;

liquidPoint = movAvgVal;

if(MarketPosition = 1) then ExitLong tomorrow at liquidPoint stop;

if(MarketPosition = –1) then ExitShort tomorrow at liquidPoint stop;

312 TradeStation 2000i Source Code of Select Programs

www.fx1618.com



{MyAdxSys—TradeStation 2000i}

Inputs: adxLength(14),mavLength(9),mavLength2(19);

Vars:adxVal(0);

adxVal = Adx(adxLength);

if(adxVal>=15) then

begin

if(Average(Close,mavLength1) crosses above Average(Close,mavLength2)) then

buy tomorrow at High stop;

if(Average(Close,mavLength1) crosses below Average(Close,mavLength2)) then

sell tomorrow at Low stop;

end;

if(adxVal<15) then

begin

if(MarketPosition = 1) then ExitLong next bar at Lowest(Low,4) stop;

if(MarketPosition = –1) then ExitShort next bar at Highest(High,4) stop;

end;

TradeStation 2000i Source Code of Select Programs 313

www.fx1618.com



{MyMomRsi—TradeStation 2000i Format

Combines Momentum and the RSI into one strategy and incorporates built-in protective stop

and trailing stop functions.}

Inputs: momLength(14),rsi(14),protStop$(3000),

trailStopThresh$(3000),trailStopPrcnt(25);

if(Momentum(Close,momLength)>0 and

RSI(Close,rsiLength) crosses below 60) then

{crosses below means the same as

RSI(Close,rsiLength)[1]>60 and RSI(Close,rsiLength)<60}

begin

Buy("Mom+RetB")next bar at Lowest(Low,3) limit;

end;

if(Momentum(Close,momLength)<0 and

RSI(Close,rsiLength) crosses above 40) then

begin

Sell("Mom–RetS") next bar at Highest(High,3) limit;

end;

SetStopLoss(protStop$);

SetPercentTrailing(trailStopThresh$,trailStopPrcnt);

314 TradeStation 2000i Source Code of Select Programs

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



{MyMovAvgSys—TradeStation 20001 Format

demonstrates the use of nested function calls.}

Inputs: movAvgLength1(9),movAvgLength2(19),channelLength(20);

value1 = Highest(Average(Close,movAvgLength1),channelLength);

value2 = Lowest(Average(Close,movAvgLength1),channelLength);

Buy tomorrow at value1 stop;

Sell tomorrow at value2 stop;

{MyStrategy-1 or MySignal-1—TradeStation 2000i Format

The hello world program of EasyLanguage}

Inputs: longLength(40),shortLength(40);

Buy tomorrow at Highest(High,longLength)stop;

Sell tomorrow at Lowest(Low,shortLength)stop;

TradeStation 2000i Source Code of Select Programs 315

www.fx1618.com



{MyTrailPrcntStop—TradeStation 2000i Format

user defined/programmed percent trailing stop.}

Inputs: trailStopThresh(3000),trailStopPrcnt(25);

Vars: maxPositionProf(0),longLiqPoint(0),prevMarketPosition(0);

if(marketposition <> 1) then buy tomorrow at Highest(high,10) on stop;

if(marketposition <> prevMarketPosition) then maxPositionProf = 0;

prevMarketPosition = MarketPosition;

if(marketPosition = 1) then

begin

maxPositionProf = maxlist(High–entryPrice,maxPositionProf);

if(maxPositionprof*bigPointValue>trailStopThresh) then

begin

longLiqPoint = EntryPrice + (maxPositionprof*(1–trailStopPrcnt/100);

ExitLong next bar longLiqPoint stop;

end;

end;

SetStepLoss(3000);

316 TradeStation 2000i Source Code of Select Programs

www.fx1618.com



{Seasonal Soybean—TradeStation 2000i Format}

Inputs: goLongStart(301),goLongEnd(701),goShortStart(702),goShortEnd(228);

Vars: monthAndDay(0);

{The inputs represent the months and days that we can enter long and short trades}

{301 is March 01   >> can only go long from this date and up to

701 is July 01   >> this date

702 is July 02   >> can only go short from this date and up to

228 is February 28 >> this date}

{Let's use the date and extract the information that we need to determine the month and

day}

{If we devide the date by 10000, the remainder is the month and day. We can use the

modulus function which determines the remainder of division}

monthAndDay = Mod(Date of tomorrow,10000);

if(monthAndDay >= goLongStart and monthAndDay <= goLongEnd) then

begin

buy("Seasonal Buy") tomorrow at Open;

end;

if(monthAndDay >= goShortStart or monthAndDay <= goShortEnd) then

{Notice that we had to use "or" instead of "and"—this is due

to the goShortEnd date is less than the goShortStart date}

begin;

sell("Seasonal Sell") tomorrow at Open;

end;

TradeStation 2000i Source Code of Select Programs 317

www.fx1618.com



{Super Combo by George Pruitt

This intraday trading system will illustrate the multiple data handling capabilities of

TradeStation. All pertinent buy and sell calculations will be based on daily bars and

actual trades will be executed on 5-min bars. I have made most of the parameters input

variables.}

Inputs:waitPeriodMins(30),initTradesEndTime(1430),liqRevEndTime(1200),

thrustPrcnt1(0.30),thrustPrcnt2(0.60),breakOutPrcnt(0.25),

failedBreakOutPrcnt(0.25),protStopPrcnt1(0.25),protStopPrcnt2(0.15),

protStopAmt(3.00),breakEvenPrcnt(0.50),avgRngLength(10),avgOCLength(10);

Variables:averageRange(0),averageOCRange(0),canTrade(0),buyEasierDay(FALSE),

sellEasierDay(FALSE),buyBOPoint(0),sellBOPoint(0),longBreakPt(0),

shortBreakPt(0),longFBOPoint(0),shortFBOPoint(0),barCount(0),

intraHigh(0),intraLow(999999),buysToday(0),sellsToday(0),

currTrdType(0),longLiqPoint(0),shortLiqPoint(0),yesterdayOCRRange(0),

intraTradeHigh(0),intraTradeLow(999999);

{Just like we did in the pseudocode—lets start out with the daily

bar calculations. If Date <> Date[1]—first bar of day}

if(Date <> Date[1]) then {save time by doing these calculations once per day}

begin

averageRange = Average(Range,10) of Data2; {Data 2 points to daily bars}

yesterdayOCRRange = AbsValue(Open of Data2–Close of Data2);

average OCRange = Average(AbsValue(Open of Data2–Close of Data2),10);

print(date,time,yesterdayOCRRange,averageOCRange);

canTrade = 0;

if(yesterdayOCRRange<0.80*averageOCRange) then canTrade = 1;

buyEasierDay = FALSE;

sellEasierDay = FALSE;

if(Close of Data2 <= CLose[1] of Data2) then buyEasierDay = TRUE;

if(Close of Data2 > Close[1] of Data2) then sellEasierDay = TRUE;

if(buyEasierDay) then

begin

buyBOPoint = Open of data1 + thrustPrcnt1*averageRange;

sellBOPoint = Open of data 1 – thrustPrcnt2*averageRange;

end;

if(sellEasierDay) then

begin

sellBOPoint = Open of data1 – thrustPrcnt1*averageRange;

buyBOPoint = Open of data1 + thrustPrcnt2*averageRange;

end;

longBreakPt = High of Data2 + breakOutPrcnt*averageRange;

shortBreakPt = Low of Data2 – breakOutPrcnt*averageRange;

318 TradeStation 2000i Source Code of Select Programs

www.fx1618.com



shortFBOPoint = High of Data2 – failedBreakOutPrcnt*averageRange;

longFBOPoint = Low of Data2 + failedBreakOutPrcnt*averageRange;

{Go ahead and initialize any variables that we may need later on in the day}

barCount = 0;

intraHigh = 0;intraLow = 999999;{Didn't know you could do this}

buysToday = 0;sellsToday = 0;{You can put multiple statements on one line}

currTrdType = 0;

end;

{Now lets trade and manage on 5-min bars}

if(High > intraHigh) then intraHigh = High;

if(Low < intraLow) then intraLow = Low;

barCount = barCount + 1; {count the number of bars of intraday data}

if(barCount >= waitPeriodMins/BarInterval and canTrade = 1) then {have we waited long

enough}

begin

if(MarketPosition = 0) then

begin

intraTradeHigh = 0;

intraTradeLow = 999999;

end;

if(MarketPosition = 1) then

begin

intraTradeHigh = MaxList(intraTradeHigh,High);

buysToday = 1;

end;

if(MarketPosition = –1) then

begin

intraTradeLow = MinList(intraTradeLow,Low);

sellsToday = 1;

end;

if(buysToday = 0 and Time < initTradesEndTime) then

Buy("LBreakOut") next bar at buyBOPoint stop;

if(sellsToday = 0 and Time < initTradesEndTime) then

Sell("SBreakOut") next bar at sellBOPoint stop;

if(intraHigh > longBreakPt and sellsToday = 0 and Time < initTradesEndTime) then

Sell("SfailedBO") next bar at shortFBOPoint stop;

if(intraLow < shortBreakPt and buysToday = 0 and Time < initTradesEndTime) then

Buy("BfailedBO") next bar at longFBOPoint stop;

{The next module keeps track of positions and places protective stops}

if(MarketPosition = 1) then

begin

longLiqPoint = EntryPrice–protStopPrcnt1*averageRage;

longLiqPoint = MinList(longLiqPoint,EntryPrice – protStopAmt);

if(MarketPosition(1) = –1 and BarsSinceEntry = 1 and

TradeStation 2000i Source Code of Select Programs 319

www.fx1618.com



High[1] >= shortLiqPoint and shortLiqPoint < shortFBOPoint) then

currTrdType = –2; {we just got long from a short liq reversal}

if(currTrdType = –2) then

begin

longLiqPoint = EntryPrice – protStopPrcnt2*averageRange;

longLiqPoint = MinList(longLiqPoint,EntryPrice – protStopAmt);

end;

if(intraTradeHigh >= EntryPrice + breakEvenPrcnt*averageRange) then

longLiqPoint = EntryPrice;   {Breakeven trade}

if(Time >= initTradesEndTime) then

longLiqPoint = MaxList(longLiqPoint,Lowest(Low,3)); {Trailing stop}

if(Time < liqRevEndTime and sellsToday = 0 and

longLiqPoint <> EntryPrice and BarsSinceEntry > 4) then

begin

Sell("LongLiqRev") next bar at longLiqPoint stop;

end

else begin

ExitLong("LongLiq") next bar at longLiqPoint stop;

end;

end;

if(MarketPosition = –1) then

begin

shortLiqPoint = EntryPrice+protStopPrcnt1*averageRange;

shortLiqPoint = MaxList(shortLiqPoint,EntryPrice + protStopAmt);

if(MarketPosition(1) = 1 and BarsSinceEntry(0) = 1 and

Low [1] <= longLiqPoint and longLiqPoint > longFBOPoint) then

currTrdType = +2; {we just got long from a short liq reversal}

if(currTrdType = +2) then

begin

shortLiqPoint = EntryPrice + protStopPrcnt2*averageRange;

shortLiqPoint = MaxList(shortLiqPoint,EntryPrice + protStopAmt);

end;

if(intraTradeLow <= EntryPrice – breakEvenPrcnt*averageRange) then

shortLiqPoint = EntryPrice;  {Breakeven trade}

if(Time >= initTradesEndTime) then

shortLiqPoint = MinList(shortLiqPoint,Highest(High,3)); {Trailing stop}

if(Time < liqRevEndTime and buysToday = 0 and

shortLiqPoint <> EntryPrice and BarsSinceEntry > 4) then

begin

Buy("ShortLiqRev") next bar at shortLiqPoint stop;

end

else begin

ExitShort("ShortLiq") next bar at shortLiqPoint stop;

end;

end;

end;

SetExitOnClose;

320 TradeStation 2000i Source Code of Select Programs

www.fx1618.com



{Thermostat by George Pruitt

Two systems in one. If the ChoppyMarketIndex is less than 20

then we are in a swing mode. If it is greater than or equal

to 20 then we are in a trend mode. Swing system is an open range

breakout incorporating a buy easier/sell easier concept. The trend

following system is based on bollinger bands and is similar to the

BollingerBandit program.}

Inputs: bollingerLengths(50),trendLiqLength(50),numStdDevs(2),

swingPrcnt1(0.50),swingPrcnt2(0.75),atrLength(10),

swingTrendSwitch(20);

Vars:cmiVal(0),buyEasierDay(0),sellEasierDay(0),trendLokBuy(0),

trendLokSell(0),keyOfDay(0),swingBuyPt(0),swingSellPt(0),

trendBuyPt(0),trendSellPt(0),swingProtStop(0);

cmiVal = ChoppyMarketIndex(30);

buyEasierDay = 0;

sellEasierDay = 0;

trendLokBuy = Average(Low,3);

trendLokSell = Average(High,3);

keyOfDay = (High + Low + Close)/3;

if(Close > keyOfDay) then sellEasierDay = 1;

if(Close <= keyOfDay) then buyEasierDay = 1;

if(buyEasierDay = 1) then

begin

swingBuyPt = Open of tomorrow + swingPrcnt1*AvgTrueRange(atrLength);

swingSellPt = Open of tomorrow – swingPrcnt2*AvgTrueRange(atrLength);

end;

if(sellEasierDay = 1) then

begin

swingBuyPt = Open of tomorrow + swingPrcnt2*AvgTrueRange(atrLength);

swingSellPt = Open of tomorrow – swingPrcnt1*AvgTrueRange(atrLength);

end;

swingBuyPt = MaxList(swingBuyPt,trendLokBuy);

swingSellPt = MinList(swingSellPt,trendLokSell);

trendBuyPt = BollingerBand(Close,bollingerLengths,numStdDevs);

trendSellPt = BollingerBand(Close,bollingerLengths,–numStdDevs);

if(cmiVal < swingTrendSwitch) then

TradeStation 2000i Source Code of Select Programs 321

www.fx1618.com



begin

if(MarketPosition <> 1) then Buy("SwingBuy") next bar at swingBuyPt stop;

if(MarketPosition <> –1) then Sell("SwingSell") next bar at swingSellPt stop;

end

else

begin

swingProtStop = 3*AvgTrueRange(atrLength);

Buy("TrendBuy") next bar at trendBuyPt stop;

Sell("TrendSell") next bar at trendSellPt stop;

ExitLong from Entry("TrendBuy") next bar at Average(Close,trendLiqLength) stop;

ExitShort from Entry("TrendSell") next bar at Average(Close,trendLiqLength) stop;

ExitLong from Entry("SwingBuy") next bar at EntryPrice – swingProtStop stop;

ExitShort from Entry("SwingSell") next bar at EntryPrice + swingProtStop stop;

end;

322 TradeStation 2000i Source Code of Select Programs

www.fx1618.com



{The Ghost Trader by George Pruitt TradeStation
2000i Format}

This strategy keeps track of the simulated trades of a trading system and

makes real buying and selling decisions based on the performance of the 

simulated system}

vars: myPosition(0),myEntryPrice(0),myProfit(-1);

{Ghost system }

{Look to see if a trade would have been executed today and keep track

of our position and our entry price. Test today's high/low price 

against the trade signal that was generated by offsetting our calculations

by one day.}

if(myPosition = 0 and Xaverage(Close[1],9) > Xaverage(High[1],19) and 

RSI(Close[1],9) crosses below 70 and High >= High[1]) then

begin

myEntryPrice = MaxList(Open,High[1]); {Check for a gap open}

myPosition = 1;

end;

if(myPosition = 1 and Low < Lowest(Low[1],20) )then

begin

value1 = MinList((Lowest(low[1],20)),Open); {Check for a gap open}

myProfit = value1 - myEntryPrice;           {Calculate our trade profit/loss}

myPosition = 0;

end;

if(myPosition = 0 and Xaverage(Close[1],9) < Xaverage(Low[1],19) and 

RSI(Close[1],9) crosses above 30 and Low <= Low[1]) then

begin

myEntryPrice = MinList(Open,Low[1]);

myPosition = -1;

end;

if(myPosition = -1 and High > Highest(High[1],20)) then

begin

value1 = MaxList((Highest(High[1],20)),Open);{Check again for a gap open}

myProfit = myEntryPrice - value1;            {Calculate our trade profit/loss}

myPosition = 0;

end;

TradeStation 2000i Source Code of Select Programs 323

www.fx1618.com



{Real System}

{Only enter a new position if the last simulated or real trade was a loser.

If last trade was a loser, myProfit will be less than zero.}

if(marketPosition = 0 and myProfit < 0 and Xaverage(Close,9) > Xaverage(High,19) and

RSI(Close,9) crosses below 70) then

begin

Buy next bar at High stop;

end;

if(marketPosition = 0 and myProfit < 0 and Xaverage(Close,9) < Xaverage(Low,19) and

RSI(Close,9) crosses above 30) then

begin

Sell next bar at Low stop;

end;

if(marketPosition = 1) then Exit Long next bar at Lowest(Low,20) stop;

if(marketPosition = -1) then Exit Short next bar at Highest(High,20) stop;

324 TradeStation 2000i Source Code of Select Programs

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



{The Money Manager by George Pruitt TradeStation
2000i Format}

{Demonstrates the programming and use of a money management scheme.}

{The user inputs initial capital and the amount he wants to risk on each trade.}

Inputs: initCapital(100000),rskAmt(.02);

Vars: marketRisk(0),numContracts(0);

marketRisk = StdDev(Close,30) * BigPointValue;

numContracts = (initialCapital * rskAmt) / marketRisk;

value1 = Round(numContracts,0);

if(value1 > numContracts) then

numContracts = value1 – 1

else

numContracts = value1;

numContracts = MaxList(numContracts,1); {make sure at least 1 contract is traded}

Buy("MMBuy") numContracts shares tomorrow at Highest(High,40) stop;

Sell ("MMSell") numContracts shares tomorrow at Lowest(Low,40) stop;

if(MarketPosition = 1) then ExitLong("LongLiq") next bar at Lowest(Low,20) stop;

if(MarketPosition = -1) then ExitShort("ShortLiq") next bar at Highest(High,20) stop;

TradeStation 2000i Source Code of Select Programs 325

www.fx1618.com



326

APPENDIX

C
Reserved Words
Quick Reference

#BEGINALERT

A compiler directive that executes instructions between #BeginAlert and #End only 

when the Enable Alert check box is selected.

Usage: #BeginAlert
Alert("ADX Alert");

#End;

#BEGINCMTRY

A compiler directive that executes instructions between #BeginCmtry and #End only 

when using the Analysis Commentary tool to select a bar on a chart or a cell on a 

grid.

Usage: #BeginCmtry
Commentary(“The value is ” + NumtoStr(Plot1, 0));

#End;

#BEGINCMTRYORALERT

A compiler directive that executes instructions between #BeginCmtryOrAlert and

#End when either the Alert or Commentary conditions exist.

Usage: #BeginCmtryorAlert
Alert("ADX Alert");
Commentary(“The value is ” + NumtoStr(Plot1, 0));

#End;

#END

A compiler directive used to terminate an alert or commentary block statement.

www.fx1618.com



AB_AddCell

Adds a cell to an ActivityBar row.

Syntax: AB_AddCell(Price, Side, Str_Char, Color, Value);

Price: a numeric expression representing the price of a bar (e.g.,Open,Close)
Side: LeftSide,RightSide

Str_Char: a character that is displayed in the ActivityBar cell (e.g.,"A","N")

Color: an EasyLanguage color value (e.g.,Red, Black)

Value: a numeric expression representing the value of the cell

Usage: AB_AddCell(Open, Leftside, "A", Red, 1) ;

AB_AddCellRange

Adds cells to a price range of the current bar starting at LowValue to HighValue.

Syntax: AB_AddCellRange(RangeHi, RangeLo, Side, Label, Color, Value)
RangeHi: a numeric expression representing the highest price for a column

RangeLo: a numeric expression representing the lowest price for a column
Side: LeftSide,RightSide

Label: a character that will be placed in the ActivityBar cell (e.g.,"A","N")

Color: an EasyLanguage color value (e.g.,Red, Black)

Value: a numeric expression representing the value of each cell to be added

Usage: Value1 = AB_AddCellRange(High of ActivityData, Low of 
ActivityData, RightSide, “U”, Green, 0);

AB_AverageCells

Returns the average number of ActivityBar cells per row for the current bar.

Syntax: AB_AverageCells(Side)
Side: LeftSide,RightSide

Usage: Value2 = AB_AverageCells(RightSide);

AB_AveragePrice

Returns the average price of the ActivityBar cells on one or both sides.

Syntax: AB_AveragePrice(Side)
Side: LeftSide,RightSide

Usage: Value2 = AB_AveragePrice(LeftSide);

AB_CellCount

Counts and returns the number of cells on one or both sides of an ActivityBar.

Syntax: AB_CellCount(Side)
Side: LeftSide,RightSide

Usage: Value2 = AB_CellCount(LeftSide);

Reserved Words Quick Reference 327

www.fx1618.com



AB_GetCellChar

Returns the text string expression stored in the specified cell.

Syntax: AB_GetCellChar(Price,Side,Column)
Price: price value of the row containing the character

Side: LeftSide,RightSide

Column: number of the cell column containing the character on the side specified

Usage: Str = AB_GetCellChar(Close, RightSide, 3) ;

AB_GetCellColor

Returns the color of the character stored in the specified cell.

Syntax: AB_GetCellColor(Price,Side,Column)

Same parameters as AB_GetCellChar above.
Usage: Value1 = AB_GetCellChar(Open, LeftSide, 2) ;

AB_GetCellDate

Returns the corresponding date of the specified cell.

Syntax: AB_GetCellDate(Price,Side,Column)

Same parameters as AB_GetCellChar above.
Usage: Value2 = AB_GetCellDate(High,RightSide, 5) ;

AB_GetCellTime

Returns the corresponding time of the specified cell.

Syntax: AB_GetCellTime(Price,Side,Column)

Same parameters as AB_GetCellChar above.
Usage: Value1 = AB_GetCellTime(Low,LeftSide, 4) ;

AB_GetCellValue

Returns the extra value stored in the specified cell.

Syntax: AB_GetCellValue(Price,Side,Column)

Same parameters as AB_GetCellChar above.
Usage: Value2 = AB_GetCellValue(High,RightSide, 1) ;

AB_GetNumCells

Returns how many cells exist at a specified price on the right or left side.

Syntax: AB_GetNumCells(Price,Side)
Price: price value of the row 

Side: LeftSide,RightSide

Usage: Value1 = AB_GetNumCells(Close,LeftSide) ;

AB_GetZoneHigh

Returns the value of the top (high) of the ActivityBar zone.

Syntax: AB_GetZoneHigh(Side)
Side: LeftSide,RightSide

Usage: Value1 = AB_GetZoneHigh(LeftSide) ;

328 Reserved Words Quick Reference

www.fx1618.com



AB_GetZoneLow

Returns the value of the bottom (low) of the ActivityBar zone.

Syntax: AB_GetZoneLow(Side)
Side: LeftSide,RightSide

Usage: Value2 = AB_GetZoneLow(RightSide) ;

AB_High

Returns the high of the current ActivityBar.

Usage: Value1 = AB_High ;

AB_Low

Returns the low of the current ActivityBar.

Usage: Value1 = AB_Low ;

AB_Median

Returns the median price value of the cells for the current ActivityBar.

Syntax: AB_Median(Side)
Side: LeftSide,RightSide

Usage: Value2 = AB_Median(RightSide) ;

AB_Mode

Returns the cell count of the row with the most cells (the Mode row) and the price of 

the Mode row.

Syntax: AB_Mode(Side, Type, oModeCount, oModePrice)
Side: LeftSide,RightSide

Type: >= 0 for Largest mode, < 0 for smallest mode

oModeCount: Variable or array element that takes the number of cells (passed by reference)

oModePrice: Variable or array element that takes the Mode price (passed by reference)

Usage: Value1 = AB_ModeCount(LeftSide) ;

AB_NextColor

Specifies the color of ActivityBar cells based on a user-defined interval. 

Syntax: AB_NextColor(MinuteInterval)
MinuteInterval: number of minutes that make up each cell color interval

Usage: Value1 = AB_NextColor(10);

AB_NextLabel

Returns a letter/number to use in an ActivityBar cell based on a user-defined interval. 

Syntax: AB_NextLabel(MinuteInterval)
MinuteInterval: number of minutes that make up each cell label interval

Usage: Value1 = AB_NextLabel(10);

Reserved Words Quick Reference 329

www.fx1618.com



AB_RemoveCell

Removes a cell from an ActivityBar row.

Syntax: AB_RemoveCell(Price,Column,Side)
Price: price value of the cell to remove

Column: number of the column containing the cell on the side specified

Side: LeftSide,RightSide

Usage: Value1 = AB_RemoveCell(Close,3,RightSide) ;

AB_RowHeightCalc

Calculates and returns the row height to use for an ActivityBar.

Syntax: AB_RowHeightCalc(ApproxNumRows,RangeAvgLength)
ApproxNumRows: the approximate number of rows desired (usually between 5 and 25)

RangeAvgLength: number of bars back used to determine the average price range

Usage: Value2 = AB_RowHeightCalc(10, 5) ;

AB_RowHeight

Returns the row (cell) height for an ActivityBar. Often used with AB_SetRowHeight.

Usage: Value1 = AB_RowHeight ;

AB_SetActiveCell

Changes the placement of the ActivityBar marker to the specified location on the bar.

Syntax: AB_SetActiveCell(Price,Side)
Price: price value of the cell row

Side: LeftSide,RightSide

Usage: AB_SetActiveCell(Open,RightSide) ;

AB_SetRowHeight

Changes the current ActivityBar’s row-increment value.

Syntax: AB_SetRowHeight(RowHeight)
RowHeight: value representing the row spacing for cells. Generally use 
AB_RowHeightCalc as the parameter.

Usage: AB_SetRowHeight(AB_RowHeightCalc(10,5)) ;

AB_SetZone

Sets a zone range box for an ActivityBar side.

Syntax: AB_SetZone(HighPrice,LowPrice, Side)
HighPrice: a numeric expression representing the high price of the zone range box

LowPrice: a numeric expression representing the low price of the zone range box
Side: LeftSide,RightSide

Usage: AB_SetZone(Average(High, 5), Average(Low, 5), RightSide);

330 Reserved Words Quick Reference

www.fx1618.com



AB_StdDev

Returns the standard deviation of the ActivityBar cells for the specified side.

Syntax: AB_StdDev(Multiplier, Side)
Multiplier: represents the number of standard deviations to calculate

Side:  LeftSide,RightSide,Both

Usage: Value2 = AB_StdDev(2, LeftSide);

Above

Used only with Crosses to detect a value crossing above, or over, another value.

Usage: If Plot11 Crosses Above Plot2 Then {Any Operation} ;

AbsValue

Absolute value of num.

Syntax: AbsValue(Num)
Num: a numeric value or expression

Usage: Value1 = AbsValue(-1.45); {returns a value of 1.45}

ActivityData

References any bar data element (Open, upticks, etc.) of the ActivityBar.

Usage: Value2 = AB_AddCellRange(High of ActivityData,Low of 
ActivityData,Rightside,3,2);

AddToMovieChain

Appends movie file MFile to end of movie chain MChain.

Syntax: AddToMovieChain(MFile,MChain)
MFile: a numeric expression representing a movie chain ID

MChain: a string expression representing the path and name of the *.avi file to be 
added to the specified movie chain

Ago

References a specified number of bars back already analyzed by EasyLanguage.

Usage: Value1 = Close of 1 Bar Ago; {returns Close of the previous bar}

Alert

When True, triggers an alert for an indicator or study. The alert description is optional.

Usage: If {Your Alert Criteria} Then Alert(“MyAlert”);

AlertEnabled

Returns True if the Enable Alert check box is selected.

Usage: If AlertEnabled Then Begin
{Your Code Here}

End ;

All

Specifies all shares/contracts are to be sold/covered when exiting a position.

Usage: If Condition1 Then Sell All Shares Next Bar at Market;

Reserved Words Quick Reference 331

www.fx1618.com



An

Skip word used to improve readability. Ignored during execution.

Usage: If an Open is > 100 Then {any operation}

AND

Links 2 true/false expressions together. True if both expressions are true.

Usage: If Plot1 Crosses Above Plot2 AND Plot2 > 5 Then
{any operation};

Arctangent

Returns the arctangent value of num degrees.

Usage: Value1 = Arctangent(45); {returns 88.7270 when num is 45 degrees}

Array

Used to declare an array type of variable.

Syntax: Array: AnyName[Elements](InitialValue)
Elements: the number of indexed values that this array can store

InitialValue: a numeric expression used to set the initial value of each element

Usage: Array: AnyName[4](0); {declares a 4 element array with '0' for initial values}

Arrays

Used to declare an array type of variable.

See Array.

ARRAYSIZE

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL. 

ARRAYSTARTADDR

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

At

Skip word used to improve readability. Ignored during execution.

Usage: Buy 100 Contracts on Next Bar at Market;

At$

Anchors exit prices to the bar where the named entry order was placed.

Usage: Sell from Entry("MA Cross") At$ Low - 1 Point Stop;

AtCommentaryBar

Returns True if the current bar was selected with the Analysis Commentary Tool.

Usage: If AtCommentaryBar Then {your commentary} ;

AvgBarsLosTrade

The average number of bars that elapsed during losing trades for all closed trades.

Usage: Value1 = AvgBarsLosTrade; {Note: returns the integer portion of the average}

332 Reserved Words Quick Reference

www.fx1618.com



AvgBarsWinTrade

The average number of bars that elapsed during winning trades for all closed trades.

Usage: Value2 = AvgBarsWinTrade; {Note: returns the integer portion of the average}

AvgEntryPrice

Returns the average entry price of each open entry in a pyramided position.

Usage: Value1 = AvgEntryPrice; {returns 70 for open trades entered at 45, 75 and 90}

AvgList

Returns the average of the listed values.

Usage: Value2 = AvgList(18, 67, 98, 24, 65, 19); {returns a value of 48.5}

Bar

References values for a specific bar based on the data interval.

Usage: Buy Next Bar at Open ;

BarInterval

Returns the data interval (in minutes) for bars on a minute-based chart. 

Bars

References a bar occurring N bars ago based on the data interval.

Usage: Value2 = Open of 5 Bars Ago ;

BarsSinceEntry

Bars since initial entry of position, num position(s) ago.

Syntax: BarsSinceEntry(Num)
Num: number of positions ago, 0 for current position

BarsSinceExit

Bars since position closed-out, num position(s) ago.

Syntax: BarsSinceExit(Num)
Num: number of positions ago, 0 for current position

BarStatus

Determines if a trade (tick) opened the bar, closed the bar, or is ‘inside the bar.’

Syntax: BarsStatus(DataSeries)
DataSeries: specifies which data series to use

Returns: 0 for opening tick, 1 for inside tick, 2 for closing tick, -1 on an error

Usage: Value2 = BarStatus(2) ;

BarType

The compression setting of the price data for the applied analysis technique. 

Returns: 0 forTick, 1 for Intraday, 2 for Daily, 3 for Weekly, 4 for Monthly, 5 for Point & Figure.

Usage: If BarType = 2 Then {Any Operation}     {tests for daily bars}

Reserved Words Quick Reference 333

www.fx1618.com



Based

Skip word retained for backward compatibility.

Begin

Used to begin a block of EasyLanguage instructions within a conditional statement.

Usage: If Condition1 = True Then Begin
      {Your Code Line1}
      {Your Code Line2, etc.}

 End;

Below

Used only with Crosses to detect a value crossing below, or under, another value

Usage: If Value1 Crosses Below Value2 Then {Any Operation} ;

Beta

Returns the Beta value of a stock compared to the S&P 500 index. 

Beta_Down

Returns the Beta value of a stock when S&P 500 is down.

Beta_Up

Returns the Beta value of a stock when S&P 500 is up.

BigPointValue

Dollar amount of 1 full point move.

Usage: Value1 = BigPointValue * Close;

Black

Specifies color Black (numeric value = 1) for plots and backgrounds.

BlockNumber

Returns the unique Security Block number attached to this computer.

Blue

Specifies the color Blue (numeric value = 2) for plots and backgrounds.

Usage: Plot1(Value1, "Test", Blue);

Book_Val_Per_Share

Returns calculated book value per share (common shares / outstanding shares).

BOOL

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

BoxSize

Refers to minimum price change needed to add an X or O to a Point & Figure chart.

334 Reserved Words Quick Reference

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



BreakEvenStopFloor

Reserved for backward compatibility with previous versions of the product. Replaced 

by the reserved word SetBreakEven.

Buy

Initiates a long position. Covers any short positions & reverses an existing position.

Syntax: Buy [("Order Name")] [num of shares] execution instruction;

execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: Buy Next Bar at Market;
Buy("Buy Close") 20 Shares This Bar on Close;
Buy 5 Contracts Next Bar at High + Range Stop;
Buy("BuyLimit") Next Bar at Price Limit;

BuyToCover

A trading strategy order to partially or completely cover short positions.

Syntax: BuyToCover [from entry ("MyTrade")] [num of shares] execution instruction;
execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: BuyToCover Next Bar at Market;
BuyToCover From Entry ("BuyClose") Next Bar at 75 Stop
BuyToCover 5 Contracts Next Bar at Low + Range Stop;
BuyToCover From Entry ("BuyLimit") Next Bar at Price Limit;

By

Skip word ignored during execution.

Usage: Value1 = (High-Close) / by 2;

BYTE

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

C

Abbreviation for Close. Returns the closing price of a referenced bar.

Usage: If Price > Close of 1 Bar Ago Then Buy on Close;

Cancel

Used in conjunction with Alert to cancel a previously triggered alert.

Usage: If {Any Condition} Then Cancel Alert;

Category

Category of symbol: 0=Future, 1=Future Option, 2=Stock, 3=Stock Option, etc.

Usage: Value1 = Category {returns a value of 3 for MSQ option of MSFT}

Reserved Words Quick Reference 335

www.fx1618.com



Ceiling

Returns the lowest integer greater than num.

Syntax: Ceiling(Num);
Num: a numeric value or expression

Usage: Value1 = Ceiling(4.5) {returns a value of 5}

CHAR

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

CheckAlert

Returns True for the last bar when Enable Alert check box is selected.

Usage: If CheckAlert Then {Any Operation};

CheckCommentary

Returns True when the Analysis Commentary Tool is applied to the current bar.

Usage: If CheckCommentary Then {Any Operation};

ClearDebug

Clears the contents of the Print Log tab of the EasyLanguage Output Bar.

Close

Returns the closing price of the bar being referenced.

Usage: Value1 = Close of 1 Bar Ago ;
If Close > Close[1] Then Plot1(High,"ClosedUp");

Commentary

Sends EasyLanguage expression(s) to the Analysis Commentary window.

Usage: Commentary("This is analysis commentary");

CommentaryCL

Sends EasyLanguage expression(s) to Analysis Commentary with a carriage return.

Usage: CommentaryCL("This is a single line of commentary");

CommentaryEnabled

Returns True on any bar when the Analysis Commentary window is open.

Commission

Returns the commission setting from the current strategy’s Costs tab.

CommodityNumber

Unique number representing a particular symbol in the Symbol Dictionary (optional).

Usage: If CommodityNumber = 149 Then {Any Operation};

Contract

Specifies the number of units (contracts/shares) to trade within a trading strategy.

Usage: Sell 1 Contract Next Bar at Market;

336 Reserved Words Quick Reference

www.fx1618.com



Contracts

Specifies the number of units (contracts/shares) to trade within a trading strategy.

Same as Contract.

Cosine

Returns the cosine value of num degrees.

Usage: Value1 = Cosine(72); {returns 0.3090 when num is 72 degrees}

Cost

Returns the value of the cost of establishing a leg or position.

Usage: Plot1(Cost of Leg(1), "Cost");

Cotangent

Returns the cotangent value of num degrees.

Usage: Value1 = Cotangent(45); {returns 1.0 when num is 45 degrees}

Cross

Used to detect when values have crossed over/under or above/below another value.

Usage: If Plot1 does Cross Above Plot2 Then {Any Operation};

Crosses

Used to detect when values have crossed over/under or above/below another value.

Usage: If Value1 Crosses Below Value2 Then {Any Operation};

Current

Reserved for future use.

Current_Ratio

Returns the current ratio of a stock (Total Current Assets / Total Current Liabilities).

CurrentBar

Returns the number of the bar currently being evaluated.

CurrentContracts

The number of contracts in the current position (+value is long, -value is short).

CurrentDate

Returns the current date in the format YYMMDD or YYYMMDD.

Usage: Value1 = CurrentDate; {returns a value of 1011220 on December 20, 2001}

CurrentEntries

Number of entries currently open within a position.

Usage: Value2 = CurrentEntries

CurrentTime

Returns the current time as HHMM using a 24-hour format.

Usage: Value2 = CurrentTime {returns a value of 1718 at 5:18 pm}

Reserved Words Quick Reference 337

www.fx1618.com



CustomerID

Returns the User ID number of the person to whom the software is registered.

Cyan

Specifies color Cyan (numeric value = 3) for plots and backgrounds.

D

Returns the closing date of the bar referenced. (Abbreviation for Date).

DailyLimit

Number of stocks/contracts allowed traded in 1 day.

DarkBlue

Specifies color Dark Blue (numeric value = 9) for plots and backgrounds.

DarkBrown

Specifies color Dark Brown (numeric value = 14) for plots and backgrounds.

DarkCyan

Specifies color Dark Cyan (numeric value = 10) for plots and backgrounds.

DarkGray

Specifies color Dark Gray (numeric value = 15) for plots and backgrounds.

DarkGreen

Specifies color Dark Green (numeric value = 11) for plots and backgrounds.

DarkMagenta

Specifies color Dark Magenta (numeric value = 12) for plots and backgrounds.

DarkRed

Specifies color Dark Red (numeric value = 13) for plots and backgrounds.

DataN

Used to reference information from a specified data stream.

Usage: Value1 = Low of Data10 {returns the Low for the current bar from data stream 10}

DataCompression

The compression setting of the price data for the applied analysis technique. 

Returns: 0 forTick, 1 for Intraday, 2 for Daily, 3 for Weekly, 4 for Monthly, 5 for Point & Figure.

Usage: If DataCompression=2 Then {Any Operation}     {tests for daily bars}

DataInUnion

Reserved for future use.

Date

Returns the closing date of the bar referenced in YYYMMDD format.

Usage: If Date < 990101 Then Buy This Bar on Close;

338 Reserved Words Quick Reference

www.fx1618.com



DateToJulian

Converts calendar date to Julian date.

Syntax: DateToJulian(cDate);
cDate:  numeric expression for the date in YYMMDD or YYYMMDD format.

Usage: Value2 = DateToJulian(991024) {returns Julian value of 36457)

Day

Reserved for backward compatibility. Replaced by Bar.

DayOfMonth

Returns the day of month (DD) portion of the specified calendar date.

Syntax: DayOfMonth(cDate);
cDate:  numeric expression for the date in YYMMDD or YYYMMDD format.

Usage: Value1 = DayOfMonth(991004) {returns day value of 4)

DayOfWeek

Returns the day of week (0 for Sun., 1 for Mon., ..., 6 for Sat.) for a calendar date.

Syntax: DayOfWeek(cDate);
cDate:  numeric expression for the date in YYMMDD or YYYMMDD format

Usage: Value1 = DayOfWeek(1011024){returns 3 because Oct 24, 2001 is a Wednesday)

Days

Reserved for backward compatibility. Replaced by Bars.

Default

Used in plot statements to set a style to its default value.

Usage: Plot1(Value1, "Plot1", Default, Default, 5);

DefineCustField

Reserved for future use.

DEFINEDLLFUNC

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

DeliveryMonth

Used for contracts that expire. Returns the month of expiration (1...12).

DeliveryYear

Used for contracts that expire. Returns the 3-digit year of expiration.

Description

Returns a string containing the description of the symbol if it is available.  

Usage: TextString= Description;   {symbol decription - blank if none available}

Dividend

Returns the Dividend paid any number of periods ago.

Usage:  Value1 = Dividend(2); {the last dividend amount paid 2 periods ago}

Reserved Words Quick Reference 339

www.fx1618.com



Dividend_Yield

Most recent cash dividend paid (or declared) times the dividend payment frequency.

DividendCount

The number of times that dividends have been reported in the time frame considered.

DividendDate

Date of reported stock dividend any number of periods ago.

Syntax: DividendDate(num);
Num:  number of periods ago, use 0 or no parameter for current period

Usage:  Value2 = DividendDate(4); {the date of the dividend 4 periods ago}

DividendTime

The time at which a stock dividend was paid out any number of periods ago.

Syntax: DividendTime(num);
Num:  number of periods ago, use 0 or no parameter for current period

Usage:  Value1 = DividendTime; {the time of the last reported dividend}

Does

Skip word ignored during execution.

Usage: If Plot1 Does Cross Over Plot2 Then {Any Operation}

DOUBLE

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

DownTicks

Number of ticks on a bar whose value is lower than the tick immediately preceding it 

(or an unchanged tick that follows a downtick).

DownTo

Instructs a loop's counter to decrement and exit the loop at a specified value.

Usage: For Value5 = Length DownTo 0 Begin
{Any Operations}

End;

DWORD

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

EasyLanguageVersion

Returns the EasyLanguage version currently installed (i.e., EL 2000i is version 5.1).

Usage: If EasyLanguageVersion >= 5.0 Then {Any Operation}

340 Reserved Words Quick Reference

www.fx1618.com



EL_DateStr

Returns an 8 character YYYYMMDD string based on month, day, and year values.

Syntax: EL_DateStr(Month,Day,Year);
(Month) is a numeric expression representing a month (e.g., January = 01).

(Day) is a numeric expression representing the day of the month.

(Year) is a numeric expression representing a four-digit year.

Usage: Value1 = EL_DateStr(09,05,1999){returns the string 19990905)

Else

Used to execute instructions when the specified ‘If’ condition returns False.

Usage: If Condition1 Then
      {Operation done if condition is true}

Else
{Operations done if condition is false} ;

End

Used with Begin to execute multiple statements based on a condition. See Begin.

Entry

An optional Exit parameter used to reference a specific, named entry.

Usage: Sell from Entry ("MyTrade") Next Bar at Market;

EntryDate

Returns the entry date for the specified period in the format YYYMMDD.

Usage: Value1 = EntryDate(2) {the date of the entry 2 periods ago}

EntryPrice

Returns the entry price for the specified period.

Usage: Value2 = EntryPrice(1) {the price of the entry 1 period ago}

EntryTime

Returns the entry time for the specified period in the 24-hour format HHMM.

Usage: Value1 = EntryTime(3) {the time of the entry 3 periods ago}

EPS

Returns the reported earnings-per-share value for the specified period.

Usage: Value2 = EPS(5) {the Earnings-Per-Share 5 periods ago}

EPS_PChng_Y_Ago

The percent change in EPS this quarter vs. same quarter 1 year ago.

EPS_PChng_YTD

The percent change in EPS YTD earnings vs. YTD earnings same period 1 year ago.

EPSCount

The number of times that Earnings Per Share has been reported for a specified period.

Reserved Words Quick Reference 341

www.fx1618.com



EPSDate

The date on which Earnings Per Share were reported for the specified period.

Usage: Value1 = EPSDate(2) {the Earnings Per Share date 2 periods ago}

EPSTime

The time at which Earnings Per Share were reported for the specified period.

Usage: Value1 = EPSTime {the Earnings Per Share time for this period}

ExitDate

Returns the exit date for the specified position in the format YYYMMDD.

Usage: Value2 = ExitDate(4) {the exit date 4 positions ago}

ExitPrice

Returns the exit price for the specified position

Usage: Value1 = ExitPrice(2) {the exit price 2 positions ago}

ExitTime

Returns the exit time for the specified position in 24-hour HHMM format.

Usage: Value1 = ExitTime(1) {the exit time 1 position ago}

ExpValue

Returns the exponential value of the specified number.

Usage: Value2 = ExpValue(4.5) {returns a value of 90.0171}

False

Represents the logical value False when evaluating an expression or setting an input.

Usage: Input:MyValue(False); {initializes MyValue to False}

File

Sends information to a specified file from a print statement.

Syntax: File(strFilename);
strFileName:  name of file to receive ‘print’ output

Usage: Print(File("c:\data\mydata.txt"), Date, Time, Close);

FileAppend

Appends a text string to the end of a specified file.

Syntax: FileAppend(strFilename,strText);
strFileName:  name of file to which text will be appended

strText: text string containing information that will be added to the specified text file

Usage: FileAppend("d:\myfile.txt","Add this text to the file");

FileDelete

Deletes the specified file.

Syntax: FileDelete(strFilename);
strFileName:  path name of file 

Usage: FileDelete("e:\path\anyfile.txt");

342 Reserved Words Quick Reference

www.fx1618.com



FirstNoticeDate

Returns the first notice date of a futures contract, in YYYMMDD format.

FLOAT

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Floor

Returns the highest integer less than the specified number.

Usage: Floor(6.5) {returns a value of 6}

For

Executes a block of instructions a specified number of times within a loop.

Usage: For N = 1 To 10 Begin
     Total = Total + Price[N];

End ; {adds Price(N) to Total 10 times}

FracPortion

Returns the fractional portion of a number while retaining the sign.

Usage: FracPortion(-1.72) {returns a value of -0.72}

FreeCshFlwPerShare

Calculates and returns the Free Cash Flow Per Share value.

Friday

Specifies day of the week Friday (numeric value = 5).

From

Used with Entry to specify the name of a Long or Short entry in an Exit statement.

Usage: Sell From Entry("MyTrade") Next Bar at 75 Stop ;

G_Rate_EPS_NY

The number of years over which the Earnings Per Share Growth Rate is calculated.

G_Rate_Nt_In_NY

The number of years over which the Net Income Growth Rate is calculated.

G_Rate_P_Net_Inc

The Net Income Growth Rate percentage for a stock.

GetBackgroundColor

Returns the current chart background color (see Appendix B for color values).

Usage:  Value1 = GetBackgroundColor;

GetCDRomDrive

Returns the drive letter of first CD-ROM found. 

Usage: Variable: Drive("D");
Drive = GetCDRomDrive;

Reserved Words Quick Reference 343

www.fx1618.com



GetExchangeName

Returns the name of the Exchange for a symbol.

Usage: Value1 = GetExchangeName; {i.e. ,'NYSE' for the New York Stock Exchange}

GetPlotBGColor

Returns the background color of a cell on a grid.

Syntax: GetPlotBGColor(PlotNum);
PlotNum: value or expression representing the plot number

Usage: Value2 = GetPlotBGColor(1);

GetPlotColor

Returns the numeric color value of a chart's plot line or grid's foreground color.

Syntax: GetPlotColor(PlotNum);
PlotNum: value or expression representing the plot number

Usage: Value1 = GetPlotColor(2);

GetPlotWidth

Returns the width value of a plot line in a chart.

Syntax: GetPlotWidthPlotNum);
PlotNum: value or expression representing the plot number

Usage: Value2 = GetPlotWidth(1);

GetStrategyName

Returns the strategy name as a string value.

GetSymbolName

Returns a string with the symbol name to which the analysis technique is applied.

GetSystemName

Reserved for backward compatibility. See GetStrategyName.

Gr_Rate_P_EPS

Returns the Earnings Per Share Growth Rate for a stock.

Green

Specifies color Green (numeric value = 4) for plots and backgrounds.

GrossLoss

Cumulative dollar total of all closed-out losing trades.

Usage: Value1 = GrossLoss; {returns -1000 for three losing trades of -500,-200, and -300}

GrossProfit

Cumulative dollar total of all closed-out winning trades.

Usage: Value2 = GrossProfit; {returns 800 for three winning trades of 100, 300, and 400}

344 Reserved Words Quick Reference

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



H

Returns the highest price of the bar referenced. (abbreviation for High)

Usage: Value1 = H[2]; {returns the High of 2 bars ago}

High

Returns the highest price of the bar referenced.

Usage: Value2 = High of 1 bar ago; {returns the High of the previous bar}

Higher

Synonym for stop or limit orders depending on the context used within a strategy.

Usage1: Buy Next Bar at MyEntryPrice or Higher;      {Buy... Stop}

BuyToCover Next Bar at MyExitPrice or Higher; {BuyToCover... Stop}

Usage:2 SellShort Next Bar at MyEntryPrice or Higher;{SellShort... Limit}

Sell Next Bar at MyEntryPrice or Higher; {Sell...Limit}

HistFundExists

True if historical fundamental info (EPS, Dividends, and Splits) exists for symbol.

I

Number of contracts outstanding at the close of a bar (abbreviation for OpenInt).

Usage: Value1 = I of 1 bar ago; {returns the open interest of the previous bar}

I_AvgEntryPrice

Returns the average entry price of each open entry in a pyramided position. For use 

when writing indicators and studies.

Usage: Value2 = I_AvgEntryPrice; {returns150 for opens entries at 130, 145, and 175)

I_ClosedEquity

Returns the profit or loss realized when a position is closed. For use when writing indi-

cators and studies. 

I_CurrentContracts

Returns the number of contracts held in all open entries. For use when writing indica-

tors and studies. 

Usage: Value2= I_CurrentContracts; {returns 3 for 3 open enries of 1 contract each)

I_MarketPosition

A strategy's current market position: 1 = long, -1 = short, 0 = flat. For use when writ-

ing indicators and studies. 

Usage: Value1 = I_MarketPosition;     {returns 1 if currently held position is Long)

I_OpenEquity

Returns the current gain or loss while a position is open.

Reserved Words Quick Reference 345

www.fx1618.com



If

Specifies condition(s) that must be met to execute a set of instructions.

Usage: If Condition1 Then Begin
      {Operations done if condition is true}

End ;

IncludeStrategy

Used to include one strategy’s EasyLanguage instructions in another. 

Syntax: IncludeStrategy:"StrategyName",[Input1[,InputN...]];
StrategyName: Name of the strategy to be included

Input1: refers to one of the included strategy’s inputs

InputN: additional input names separated by commas

Usage: IncludeStrategy:"LowEntry",Price,BarCount;

IncludeSystem

Reserved for backward compatibility. Replaced by IncludeStrategy.

InitialMargin

Returns the Initial Margin Requirement of a position.

Usage: If InitialMargin of Position > 500 Then {Any Operation}

Input

Used to declare an input name that accepts a user value when applying a technique.

Usage: Input: Length(10); {declares input 'Length' with an initial value of 10}

Inputs

Declares multiple inputs separated by commas. See Input.

Usage: Inputs: Price(5.25), Length(8), Status(True);

Inst_Percent_Held

The percent of common stock held by institutions relative to total outstanding shares.

InStr

Returns the location of String2 within String1.

Syntax: InStr(String1,String2);
String1: Text string to be searched

String2: Word or phrase to be found in String1

Returns: Character position of the start of String2, if found. Zero if not found.

Usage: Value1 = InStr("Net Profit Margin", "Profit");  {returns a 5} 

INT

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

346 Reserved Words Quick Reference

www.fx1618.com



IntPortion

Returns the integer portion of the specified decimal number.

Syntax: IntPortion(Num);
Num: A numeric value or expression

Usage: Value1 = IntPortion(4.125); {returns a 4} 

Is

Skip word ignored during execution.

Usage: If a Close is > 100 Then {any operation} ;

JulianToDate

Returns the calendar date YYYMMDD for the specified Julian date.

Syntax: JulianToDate(jDate);
jDate:  numeric expression for the date in Julian format.

Usage: Value2 = JulianToDate(36457); {returns Date value of 991024}

L

Returns the lowest price of the bar referenced. (abbreviation for Low)

Usage: Value1 = L[4]; {returns the Low of 4 bars ago}

LargestLosTrade

Returns the dollar value of the largest closed-out losing trade.

LargestWinTrade

Returns the dollar value of the largest closed-out winning trade.

Last_Split_Date

Returns the Date on which the last stock split was reported.

Last_Split_Fact

Returns the size or ratio of last stock split.

LastCalcJDate

Returns the Julian date of last completed bar.

LastCalcMMTime

Returns the time of last completed bar, in minutes since midnight.

Usage: Value1 = LastCalcMMTime; {returns a value of 540 if last bar was at 9:00 am}

LastTradingDate

Refers to the last day an option, future, position leg, or asset may be traded.

LeftSide

Used with ActivityBars to refer to actions on the left side of a bar.

Usage: Value2 = GetCellChar(Close, Leftside, 3);

Reserved Words Quick Reference 347

www.fx1618.com



LeftStr

Returns the leftmost (starting) portion of a text string.

Syntax: LeftStr(String,Length);
String: A text string to evaluate. Must be enclosed in quotation marks.

Length: The number of characters to return from the start of String.

Usage: Value1 = LeftStr("Net Profit", 3); {returns the word "Net"} 

LightGray

Specifies color Light Gray (numeric value = 16) for plots and backgrounds.

Limit

In an entry or exit order, means 'or higher' or 'or lower', depending on the context.

Usage: Buy Next Bar at 75 Limit; {enters a long position at a price of 75 or lower}

SellShort Next Bar at 75 Limit; {enters a short position at 75 or higher}

Log

Returns the natural logarithm of a number.

Usage: Value1 = Log(172); {returns a log value of 5.1475}

LONG

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Low

Returns the lowest price of the bar referenced.

Usage: Value2 = Low of 1 bar ago; {returns the Low of the previous bar}

Lower

Synonym for stop or limit orders depending on the context used within a strategy.

Usage1: Buy Next Bar at MyEntryPrice or Lower;     {Buy... Limit}

BuyToCover Next Bar at MyExitPrice or Lower;{BuyToCover... Limit}

Usage2: SellShort Next Bar at MyEntryPrice or Lower;{SellShort... Stop}

Sell Next Bar at MyEntryPrice or Lower; {Sell...Stop}

LowerStr

Used to convert a string expression to lowercase letters. 

Usage1: Value1 = LowerStr("My TextString") ;       {returns "my textstring"}

LPBOOL

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

LPBYTE

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

LPDOUBLE

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

348 Reserved Words Quick Reference

www.fx1618.com



LPDWORD

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

LPFLOAT

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

LPINT

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

LPLONG

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

LPSTR

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

LPWORD

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Magenta

Specifies color Magenta (numeric value = 5) for plots and backgrounds.

MakeNewMovieRef

Creates new movie reference number.

Usage: Print(MakeNewMovieRef = 1);

Margin

Returns the margin setting from the Trade costs section of the strategy’s General tab

Market

Order type referring to the opening price of the next bar.

Usage: Buy Next Bar at Market;

MarketPosition

The market position (1 = long, -1 = short, 0 = flat) of the specified position.

Syntax: MarketPosition(Num)
Num: number of positions ago

Usage: Value1 = MarketPosition(2) ; {returns1 if long 2 posittions ago was long}

MaxBarsBack

The minimum number of bars required to evaluate a study or trading strategy.

MaxBarsForward

Represents the number of bars to the right of the last bar on the chart.

MaxConsecLosers

Represents the longest chain of consecutive closed-out losing trades.

Reserved Words Quick Reference 349

www.fx1618.com



MaxConsecWinners

Represents the longest chain of consecutive closed-out winning trades.

MaxContracts

The maximum number of contracts held during the specified position.

Syntax: MaxContracts(Num)
Num: number of positions ago.

Usage: Value1 = MaxContracts(2) ; {returns number of contracts held 2 posittions ago}

MaxContractsHeld

Maximum number of contracts held at any one time.

MaxEntries

The maximum number of entry strategies for the specified position.

Syntax: MaxEntries(Num)
Num: number of positions ago.

MaxIDDrawDown

The largest drop in equity (in dollars) throughout the entire trading period.

MaxList

Returns the highest value of the listed inputs.

Syntax: MaxList(Num1[,NumN...])
Num1 the first value or expression to compare

NumN additional values to compare separated by commas

Usage: Value1 = MaxList(45, 72, 86, 125, 47);     {returns a value of 125}

MaxList2

Returns the second highest value of the listed inputs. See MaxList for syntax.

Usage: Value2 = MaxList2(18, 67, 98, 24, 65, 19);  {returns a value of 67}

MaxPositionLoss

Dollar amount of largest loss for the specified position.

Syntax: MaxPositionLoss(Num)
Num: number of positions ago.

MaxPositionProfit

Dollar amount of largest gain for the specified position.

Syntax: MaxPositionProfit(Num)
Num: number of positions ago.

MessageLog

Reserved for backward compatibility.

350 Reserved Words Quick Reference

www.fx1618.com



MidStr

Returns the middle portion of a text string.

Syntax: MidStr (String,Location,Size) ; 
String: text expression to evaluate

Location: starting character position of the text string to be returned

Size: length of the text string to be returned

Usage: Value1 = MidStr("Net Profit Value", 5, 6) {returns the word 'Profit'}

MinList

Returns the lowest value of the listed inputs.

Syntax: MinList(Num1[,NumN...])
Num1 the first value or expression to compare

NumN additional values to compare separated by commas

Usage: Value1 = MinList(45, 72, 86, 125, 47);     {returns a value of 45}

MinList2

Returns the second lowest value of the listed inputs. See MinList for syntax.

Usage: Value2 = MinList2(18, 67, 98, 24, 65, 19)  {returns a value of 19}

MinMove

Minimum tick movement of stock/future symbol.

Usage: Value1 = MinMove * PriceScale     {returns the smallest price increment}

Moc

Reserved for future use.

Mod

Divides two numbers and returns the remainder. 

Syntax: Mod(Num,Divisor)
Num: any value or expression

Divisor: any numeric expression representing the divisor.

Usage: Value1 = Mod(17, 5);                {divides 17 by 5 and returns 2 as the remainder}

Monday

Specifies day of the week Monday (numeric value = 1).

MoneyMgtStopAmt

Reserved for backward compatibility with previous versions of the product. Replaced 

by the reserved word SetStopLoss.

Month

Returns the month (MM) portion of the specified calendar date, from 1 to 12.

Syntax: Month(cDate);
cDate:  numeric expression for the date in YYMMDD or YYYMMDD format.

Usage: Value1 = Month(991004)            {returns month value of 10}

Reserved Words Quick Reference 351

www.fx1618.com



MULTIPLE

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Neg

Returns the absolute negative value of a number.

Usage: Value1 = Neg(17);                            {returns a value of -17}

Value2 = Neg(-9);                            {returns a value of -9}

Net_Profit_Margin

Calculates and returns the Net Profit Margin (Income after Taxes / Total Revenue).

NetProfit

Cumulative dollar total of all closed-out trades, both winning and losing.

Usage: Value1 = NetProfit {returns 1000 for three closed trades of -500, 1200 and 300}

NewLine

Adds carriage return/linefeed in FileAppend and commentary/file output strings.

Usage: FileAppend("c:\my.txt", "Text Line1" + NewLine + "Line2"); 

Next

Used in conjunction with Bar to reference the next bar in a trading strategy.

Usage: Buy Next Bar at Market;

NoPlot

Removes a plot from the current bar in a chart or cell in a grid.

Usage: If Close > Close[1] Then
Plot1(High, "CloseUp")             {plots 'CloseUp' on the bar}

Else
NoPlot(1);                  {removes a previous plot from the bar}

Not

Reserved for future use.

NthMaxList

Returns the Nth highest value of the listed inputs.

Syntax: NthMaxList(N,Num1[,NumN...])
N: an integer representing the rank in the list (1st, 2nd, 3rd, etc.)

Num1: the first value or expression to compare

NumN: additional values to compare separated by commas

Usage: Value1 = NthMaxList(2, 45, 72, 86, 125, 47);  {returns a value of 86}

NthMinList

Returns the Nth lowest value of the listed inputs. See syntax as NthMaxList.

Usage: Value1 = NthMinList(2, 45, 72, 86, 125, 47);  {returns a value of 47}

352 Reserved Words Quick Reference

www.fx1618.com



Numeric

Defines an input that expects a number passed by value.

Usage: Input: Price(Numeric);               {accepts a numeric value for Price}

NumericArray

Defines an input that expects a number passed by value for each array element.

Usage: Input: MyArray[n](NumericArray)      {accepts numeric inputs by value}

NumericArrayRef

Defines an input that expects a numeric variable passed by reference for each array 

element.

Usage: Input: MyArray[n](NumericArrayRef) {accepts numeric inputs by reference}

NumericRef

Defines an input that expects a numeric variable passed by reference.

Usage: Input: Price(NumericRef);    {accepts a numeric variable reference for Price}

NumericSeries

Defines an input as a numeric series expression with price history.

Usage: Input: Price(NumericSeries); {a numeric input allowing previous bar history}

NumericSimple

Defines an input as a numeric simple expression.

Usage: Input: Price(NumericSimple); {a numeric input not allowing bar history}

NumFutures

Returns the total number of futures contracts associated with a future symbol root.

Usage: Value1 = NumFutures of Asset;

NumLosTrades

Returns the total count of closed-out losing trades.

NumToStr

Converts the specified numeric expression to a string expression. 

Syntax: NumToStr(Num,Dec);
Num:  a numeric expression to be converted to a string

Dec: the number of decimal places for the string version of the value

Usage: Value1 = NumToStr(1170.5, 2) ;          {returns the text string '1170.50'}

NumWinTrades

Total count of closed-out winning trades.

O

Abbreviation for Open. Returns the opening price of a referenced bar.

Usage: If Price < O of 1 Bar Ago Then SellShort at Market;

Reserved Words Quick Reference 353

www.fx1618.com



Of

Skip word ignored during execution.

Usage: If Close of Data1 = Highest(High, 14) Then {any operation} ;

On

Skip word ignored during execution.

Usage: Buy 100 Contracts on Next Bar Open;

Open

Returns the opening price of the bar referenced.

Usage: Value1 = Open of 2 Bars Ago;

OpenInt

The open interest, or number of contracts outstanding, at the close of a specific bar.

Usage: Value2 = Average(OpenInt, 10);   {returns the average OpenInt over 10 bars}

OpenPositionProfit

Returns the gain or loss of current open position (only used with strategies).

Or

Links 2 true/false expressions together. True if either expression is true.

Usage: If Plot1 Crosses Above Plot2 Or Plot2 > 5 Then Begin
  {any operations}                    {done if either condition is true}

End;

Over

Used only with Crosses to detect a value crossing over, or above, another value.

Usage: If Plot1 Crosses Over Plot2 Then {Any Operation} ;

Pager_DefaultName

Returns the string containing of the default Message Recipient as specified in the 

Messaging tab under the File - Desktop Options menu.

Usage: Name = Pager_DefaultName;
Pager_Send(Name, “Buy 200 AMD at Market”);

Pager_Send 

Sends a text message to a specified pager recipient (if pager module enabled).

Syntax: Pager_Send(sTo,sMessage);
sTo: text string containing the name of the message recipient

sMessage:  text string containing the message contents

Usage: Pager_Send("Joe Trader", "Buy 200 AMD at Market"); 

PercentProfit

Percentage of all closed-out winning trades.

Usage: Value1 = PercentProfit;                                  {returns 80 if 8 of 10 trades were winners}

354 Reserved Words Quick Reference

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



Place

Retained for backward compatibility. Skip word.

PlayMovieChain

Queues and plays the movie chain with the specified reference number.

Usage: Condition1 = PlayMovieChain(1);  {plays the movie chain with ref number 1}

PlaySound

Plays the specified sound file (.wav file).

Usage: Condition1 = PlaySound("c:\sounds\thatsabuy.wav");

Plot

References the value of a specified plot.

Syntax: Plot(n);
n: plot number ranging from 1-4

Usage: If Plot(Value1) < Close Then Buy Next Bar on Open;

Plot1

Displays an expression (numeric or text) in a price chart or grid. 

Syntax: Plot1(Value[,sName[,fgColor,[bgColor[,Width]]]] );
Value: a numeric or text string expression or value to display on a chart or grid

sName: text string containing the name of the plot (optional)

fgColor: color number (or Default) of the plotted object or text (optional)

bgColor: color number (or Default) of the cell background in a grid (optional, ignored for charts)

Width: the thickness of a line to be plotted on a chart (optional, ignored for grids)

Usage: Plot1(Value) ; 
  or

Plot1(Value, "My Plot Name", Red, Default, 0) ; 

Plot2

Displays an expression in a price chart or grid. See Plot1 for syntax and usage.

Plot3

Displays an expression in a price chart or grid. See Plot1 for syntax and usage.

Plot4

Displays an expression in a price chart or grid. See Plot1 for syntax and usage.

Reserved Words Quick Reference 355

www.fx1618.com



PlotPaintBar

For use with PaintBar studies, enables you to paint the entire bar, or part of the bar, 

with a single instruction. 

Syntax: PlotPaintBar(High, Low[, Open, Close[, “PlotName”[,fgColor, [bgColor, Width]]]] );

High: the upper price limit to paint

Low: the lower price limit to paint

Open: (optional) paints the opening tick mark

Close: (optional) paints the closing tick mark 

PlotName: (optional) name used when referencing the plot

fgColor: (optional) color number (or Default) of the paint color 

bgColor: (optional) color number (or Default) of the background (currently ignored with charts)

Width: (optional) the thickness of the lines to be plotted

Usage1: PlotPaintBar(High,Low,Open,Close,"My Plot Name"); 
                          or

Usage2: PlotPaintBar(High,Low);

PlotPB

Abbreviated version of PlotPaintBar (see PlotPaintBar).

PM_GetCellValue

Returns the intensity value of a cell at the specified column and price location.

Syntax: PM_GetCellValue(ColNum,Price);
ColNum: the ProbabilityMap column number where the cell is located

Price: the price location of the cell

Usage: Value1 = PM_GetCellValue(12,High) ;

PM_GetNumColumns

Returns the number of columns in a ProbabilityMap array.

Usage: Value1 = PM_GetNumColumns;

PM_GetRowHeight

Returns the height or increment of the rows in a ProbabilityMap study.

PM_High

Returns the value of the upper range of a ProbabilityMap grid.

PM_Low

Returns the value of the lower range of a ProbabilityMap grid.

PM_SetCellValue

Sets the location and intensity of ProbabilityMap cells.

Syntax: PM_SetCellValue(ColNum,Price,Value) ;
ColNum: the ProbabilityMap column of the cell to be set

Price: the price location of the cell within the column

Value: a numeric expression representing the intensity of the cell

Usage: PM_SetCellValue(5,80,10) ;               {sets intensity of cell to 10}

356 Reserved Words Quick Reference

www.fx1618.com



PM_SetHigh

Sets the upper range value of a ProbabilityMap. 

Syntax: PM_SetHigh(Price)
Price: a numeric expression or value for a price

Usage: PM_SetHigh(Highest(High,50)); {sets the PM top to the Highest High}

PM_SetLow

Sets the lower range value of a ProbabilityMap.

Syntax: PM_SetLow(Price)
Price: a numeric expression or value for a price

Usage: PM_SetLow(14.5) ;               {sets the PM bottom to a price of 14.50}

PM_SetNumColumns

Sets the number of columns in a probability map array.

Syntax: PM_SetNumColumns(Num);
Num: a numeric expression or value representing the desired number of columns

Usage: PM_SetNumColumns(PM_BarColumns) ; 

PM_SetRowHeight

Sets the height of the rows for a ProbabilityMap grid.

Syntax: PM_SetRowHeight(RowHeight);

RowHeight: a numeric expression or value for the height of each PB row

Usage: PM_SetRowHeight(.125) ;           {sets the PM row height to a price of .125}

Pob

Retained for backward compatibility. Replaced by Limit.

Point

The minimal fractional value a symbol can move (one increment in the Price Scale).

Usage: Sell This Bar at EntryPrice - 1 Point Stop;

POINTER

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Points

Represents multiple ‘Point’ increments of the Price Scale. See Point.

Usage: Buy This Bar at Close - 3 Points Stop;

PointValue

The dollar value per share of one increment on the price scale. Calculated as Big Point 

Value divided by the Price Scale using the values specified in the symbol dictionary.

Usage: Value1 = PointValue;                   {returns 2.5 for S&P Futures}

Reserved Words Quick Reference 357

www.fx1618.com



Pos

Returns the absolute positive value of a number.

Usage: Value1 = Pos(17);                  {returns a value of 17}

Value2 = Pos(-9);                  {returns a value of 9}

PositionProfit

Returns the current gain (positive) or loss (negative) of the specified position.

Usage: Value1 = PositionProfit;     {returns -1.00 if the position had a loss of 1.00}

Power

Returns the number raised to the specified power. 

Syntax: Power(Num,Exponent);
Num: a numeric expression or value 

Exponent: the power by which to raise the number

Usage: Value1 = Pow(2,3);                         {returns 8 based on 23}

Price_To_Book

Stock price vs. net worth of stock company.

PriceScale

Price scale of stock/future symbol (inverted).

Usage: Value2 = PriceScale     {returns 100 for the S&P 500 Futures representing 1/100}

Print

Sends information to the Output Bar in the EasyLanguage PowerEditor or, if specified, 

to an alternate output location (a file or the default printer). 

Syntax: Print (Item1[,ItemN...]) ; 
Item1: a string or numeric expression

ItemN: additional strings or expressions separated by commas

Usage: Print(Date, Time, Close);          {prints the 3 values to the Print Log} 

window}
Usage1: Print(Printer, D, T, C);       {prints the same  3 values to the default printer}

Usage2: Print(“c:\myfile.txt”, D, T, C);   {prints the 3 values to the specified file}

Printer

Sends information to the default printer from a Print statement.

Usage: Print(Printer,"Today is: ", Date); {sends output to the default printer}

Product

Number representing the TradeStation Technologies application currently being used.

Product Name Product Number 

TradeStation                  0
Usage: If Product = 0 Then Plot1(Value1, "TS Indicator");

Profit

Reserved for future use.

358 Reserved Words Quick Reference

www.fx1618.com



ProfitTargetStop

Retained for backward compatibility with previous versions of the product. Replaced 

by the reserved word SetProfitTarget.

Protective

Reserved for future use.

Quick_Ratio

Calculated as (cash + short term investment + accounts receivable) / current liabilities.

Random

Returns a pseudo-random number between 0 and num.

Syntax: Random(num) ; 
Num: value that determines the range of possible numbers, starting with 0 and ending with Num

Usage: Value1 = Random(37);          {randomly returns any value between 0 and 37}

Red

Specifies color Red (numeric value = 6) for plots and backgrounds.

Repeat

Reserved for future use.

Ret_On_Avg_Equity

Calculated as (income available to common stockholders / average common equity).

RevSize

Reversal size of a Point & Figure chart. Set on the Settings tab under Format Symbol.

RightSide

Used with ActivityBars to refer to actions on the right side of a bar.

Usage: AB_AddCell(Open, Rightside, "A", 7, 1);

RightStr

Returns the rightmost (ending) portion of a text string.

Syntax: RightStr(String,Length);
String: A text string to evaluate. Must be enclosed in quotation marks.

Length: The number of characters to return from the end of String.

Usage: Value1 = RightStr("Net Profit", 6); {returns the word "Profit"} 

Round

Returns a number rounded to nearest precision.

Divides two numbers and returns the remainder. 

Syntax: Round(Num,Precision)
Num: any value or expression

Precision: the number of decimal places to keep

Usage: Value1 = Round(9.5687, 3);               {returns a value of 9.569}

Reserved Words Quick Reference 359

www.fx1618.com



Saturday

Specifies day of the week Saturday (numeric value = 6).

Screen

Reserved for future use.

Sell

A trading strategy order to partially or completely liquidate a long position.

Syntax: Sell [from entry ("MyTrade")] [num of shares] [execution instruction];
execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: Sell Next Bar at Market;
Sell From Entry ("BuyClose") Next Bar at 75 Stop
Sell 5 Contracts Next Bar at Low + Range Stop;
Sell From Entry ("BuyLimit") Next Bar at Price Limit;

SellShort

Initiates a short position. Closes any open positions & reverses an existing position.

Syntax: SellShort [("Order Name")] [num of shares] [execution instruction];
execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: SellShort Next Bar at Market;
SellShort("Buy Close") 20 Shares This Bar on Close;
SellShort 5 Contracts Next Bar at Low + Range Stop;
SellShort("BuyLimit") Next Bar at Price Limit;

Sess1EndTime

Ending time of the first trading session for the security in 24-hour format.

Usage: Value2 = Sess1EndTime;         {returns 1615 for IBM trading on the NYSE}

Sess1FirstBarTime

Completion time of the first bar in the first session in 24-hour format.

Usage: Value2 = Sess1FirstBarTime;     {returns 1000 for IBM using 30 min bars}

Sess1StartTime

Starting time of the first trading session for the security in 24-hour format.

Usage: Value1 = Sess1StartTime;       {returns 0930 for IBM trading on the NYSE}

Sess2EndTime

Ending time of the second trading session for the security in 24-hour format.

Usage: Value2 = Sess2EndTime;       {returns 0745 for US Treasury Bonds on CBOE}

Sess2FirstBarTime

Completion time of the first bar in the second session in 24-hour format.

Usage: Value1 = Sess2FirstBarTime;{returns 1715 for S&P 500 Futures on 30 min bars}

360 Reserved Words Quick Reference

www.fx1618.com



Sess2StartTime

Starting time of the second trading session for the security in 24-hour format.

Usage: Value1 = Sess2StartTime;     {returns 1530 for US Treasury Bonds on CBOE}

Sessions

Returns a numeric expression representing the number of sessions.

SetBreakEven

Sets a breakeven stop; specifies the profit required before placing the stop. Used by the 

trading strategy BreakEven StopFloor.

Syntax: SetBreakEven(Price)
Price: the floor, or minimum equity, needed for the stop to become active

Usage: SetStopPosition;                    {can also use SetStopContract}

SetBreakEven(250);        {places a breakeven stop after a $250 position profit}

SetDollarTrailing

Sets a dollar risk trailing stop; specifies the maximum tolerated loss amount (in dol-

lars) of the maximum open position profit. Used by the trading strategy Dollar Risk 

Trailing.

Syntax: SetDollarTrailing(Amount)
Amount: the dollar amount you are willing to risk per position or per contract/share

Usage: SetStopPosition;                                                             {can also use SetStopContract}

       SetDollarTrailing(500); {sets dollar risk trailing stop at $500 for entire position}

SetExitOnClose

Sets a stop to exit the position on the last bar of the day (for intraday charts). Used by 

the trading strategy Close at End of Day.

Usage: SetExitOnClose;                      {exits positions at end of day}

SetPercentTrailing

Sets a percent risk trailing stop; specifies the profit that must be reached to activate 

stop and the maximum tolerated loss amount (as a percentage) of the maximum open 

position profit. Used by the trading strategy PercentRisk Trailing.

Syntax: SetPercentTrailing(Amount,Percent)
Amount: the dollar amount representing the minimum needed to activate the stop

Percent: the percentage of the maximum equity needed to be lost to close the trade

Usage: SetStopPosition;                              {can also use SetStopContract}

       SetPercentTrailing(500,15);     {exits after returnof 15% over $500 earned}

SetPlotBGColor

Assigns a specified background color to grid cells for an indicator.

Syntax: SetPlotBGColor(Num,Color)
Num: plot number to set

Color: EasyLanguage color word (e.g., red, black,white) or color number

Usage: SetPlotBGColor(1, Green); {sets background color of Plot1 cells to Green}

Reserved Words Quick Reference 361

www.fx1618.com



SetPlotColor

Sets the color value of a chart's plot line or grid's foreground text color.

Syntax: SetPlotColor(Num,Color);
Num: plot number to set

Color: EasyLanguage color word (e.g. red, black,white) or color number

Usage: SetPlotColor(2, Blue); {sets foreground color of Plot2 text to Blue}

SetPlotWidth 

Modifies the width value (thickness) of a plot line in a chart.

Syntax: SetPlotWidth(Num,Width);
Num: plot number to set

Width: Numeric expression representing the plot’s width

Usage: SetPlotWidth(1, 5);                 {sets the line width of Plot1 to 5}

SetProfitTarget

Sets a profit target stop; this reserved word specifies the profit required in order to exit 

the position. Used by the trading strategy Profit Target.

Syntax: SetProfitTarget(Amount)
Amount: the dollar value of the profit target

Usage: SetStopContract;

SetProfitTarget(400);       {exits a position once it has returned $400}

SetStopContract

Instructs TradeStation to evaluate all stop values of a strategy on a per contract (entry) 

basis. Use SetStopPosition to evaluate stop values on a per position basis. 

Usage: SetStopContract;              {sets a stop for individual contract (entry)}

SetStopLoss(50) ; 

SetStopLoss

Sets a stop loss order (money management stop); specifies the amount (in dollars) you 

are willing to lose on the position/contract before it is liquidated. Used by the trading 

strategy Stop Loss.

Syntax: SetStopLoss(Amount)
Amount: the dollar amount that must be incurred before position/contract is liquidated

Usage: SetStopContract;                              {can also use SetStopContract}

       SetStopLoss(2);               {exits long position when down $2 per contract}

SetStopPosition

Instructs TradeStation to evaluate all stop values of a strategy on a per position basis. 

To evaluate all stop values on a per contract (entry) basis, use SetStopContract.

Usage: SetStopPosition;
       SetStopLoss(1200);        {places a stop loss order of $1200 for entire position}

362 Reserved Words Quick Reference

www.fx1618.com



SGA_Exp_By_NetSales

Annualized growth rate percentage of sales (calculated from the total revenue divided 

by the number of outstanding shares).

Share

Used to specify a contract/share for a particular Buy, SellShort, or exit order.

Usage: Buy 1 Share Next Bar at Market;

Shares

Used to specify the number of contracts/shares for a particular Buy, SellShort, or exit 

order.

Usage: Sell 5 Shares Next Bar at Open;

Sign

Returns 1 for a positive num, -1 for a negative num, and 0 for a num of zero.

Syntax: Sign(Num)
Num: a numeric value or expression.

Usage: Value1 = Sign(-9.5687) {returns a value of -1}

Sine

Returns the sine value of num degrees.

Usage: Value1 = Sine(72); {returns 0.9511 when num is 72 degrees}

Skip

Reserved for future use.

Slippage

Returns the slippage per contract from Trade costs section of the strategy’s General

tab.

SnapFundExists

True if snapshot fundamental data exists in the data stream; False otherwise.

Spaces

Specifies the number of blank spaces to add to a text or commentary string.

Usage: Print("Close" + Spaces(5) + NumToStr(Close, 3)); 

Square

Returns the square (2nd power) of the specified number.

Syntax: Square(Num)
Num: a numeric value or expression

Usage: Value1 = Square(6.23) {returns a value of 38.8219}

Reserved Words Quick Reference 363

www.fx1618.com



SquareRoot

Returns the square root of the specified number.

Syntax: SquareRoot(Num)
Num: a numeric value or expression

Usage: Value1 = SquareRoot(5); {returns a value of 2.2361}

StartDate

Reserved for future use.

StockSplit

Ratio of the stock split reported during a certain period.

Usage: Value2 = StockSplit(2); {returns the split ratio reported 2 periods ago}

StockSplitCount

The number of stock splits that have been reported in a given time frame.

StockSplitDate

The date on which a stock split was reported during a certain period.

Usage: Value1 = StockSplitDate(3);    {date of a stock split reported 3 periods ago}

StockSplitTime

The time at which a stock split occurred during a certain period.

Usage: Value2 = StockSplitTime; {time of the last reported stock split}

Stop

In an entry or exit order, means 'or higher' or 'or lower', depending on the context.

Usage: Buy Next Bar at 65 Stop; {enters a long position at a price of 65 or higher}

Sell Next Bar at 65 Stop; {exits a long position at a price of 65 or lower}

String

Defines a function input that accepts a string expression value.

Usage: Input: MyMessage(String);                {accepts a text string value}

StringArray

Defines a function input array that accepts multiple string expressions.

Usage: Input: Messages[n](StringArray);      {array that accepts text strings}

StringArrayRef

Defines a function input array that accepts multiple string references.

Usage: Input: Note[n](StringArrayRef);   {array that accepts strings by reference}

StringRef

Defines a function input that accepts a string expression by reference.

Usage: Input: SomeText(StringRef);                     {accepts a text string by reference}

364 Reserved Words Quick Reference

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



StringSeries

Defines a function input that accepts string expressions that include history.

Usage: Input: SomeText(StringSeries);          {accepts text strings with history}

StringSimple

Defines a function input that accepts simple string expressions without history.

Usage: Input: SomeText(StringSimple);            {accepts text strings without history}

StrLen

The number of characters that make up a text string.

Syntax: StrLen(String)
String: a text string expression (a variable or text contained within quote marks).

Usage: Value1 = StrLen("Net Profit"); {returns a count of 10 characters}

StrToNum

Returns the numerical value of a text string, zero if the string not numeric.

Syntax: StrToNum(String)
String: a text string expression (a variable or text contained within quote marks).

Usage: Value2 = StrToNum("1170.50"); {returns the numeric value 1117.5}

SumList

Returns the sum of all listed inputs.

Syntax: SumList(Num1[,NumN...])
Num1: the first value or expression

NumN: additional values to add separated by commas

Usage: Value1 = SumList(45, 72, 86, 125, 47);     {returns a value of 375}

Sunday

Specifies day of the week Sunday (numeric value = 0).

SymbolName

Returns a string expression representing the symbol name. See also GetSymbolName.

SymbolNumber

Number representing the GlobalServer symbol. See CommodityNumber and Cusip.

SymbolRoot

Returns a text string representing the root of the symbol (for futures and options only).

T

Abbreviation for Time. Returns the closing time of a referenced bar in 24-hour format.

Usage: If T of 1 Bar Ago >= 1100 Then 
Buy at Market;                         {buys at or after 11 AM}

Tangent

Returns the tangent value of num degrees.

Usage: Value1 = Tangent(72);     {returns 3.0776 when num is 72 degrees}

Reserved Words Quick Reference 365

www.fx1618.com



Target

Reserved for future use.

TargetType

Reserved for future use.

Text

Retained for backward compatibility.

Text_Delete

Deletes the specified text object.

Syntax: Text_Delete(TX_Ref)
TX_Ref: a numeric expression representing the object identification number

Returns: status code indicating whether or not operation was successful

Usage1: Text_Delete(3);                        {deletes text object number 3}

Usage2: Value1 = Text_Delete(2);     {returns status code after deleting text object 2}

Text_GetColor

Returns the color value of the specified text object.   (see Text_Delete for syntax)

Usage: Value1 = Text_GetColor(4);           {returns the color of  text object 4}

Text_GetDate

Returns the date of the left edge of the specified text object. 

Syntax: Text_Delete(TX_Ref)
TX_Ref: a numeric expression representing the object identification number

Usage: Value1 = Text_GetDate(2);            {returns the date of  text object 2}

Text_GetFirst

Returns the text object id number for the first object of a specified type.

Syntax: Text_GetFirst(Type)
Type: identifies the origin of the requested first text object

         1 = text created by an analysis technique

         2 = text created by the text drawing object only, and 

         3 = text created by either the text drawing object or an analysis technique

Returns: status code indicating whether or not operation is successful

Usage: Value2 = Text_GetFirst(2);         {returns the id of first text drawing object}

Text_GetHStyle

Gets the horizontal placement style of the specified text object. (see Text_Delete for syntax)

Returns: 0 for left, 1 for right, 2 for center, or status code if operation not successful

Usage: Value1 = Text_GetHStyle(5);         {returns horiz style of text object 5}

366 Reserved Words Quick Reference

www.fx1618.com



Text_GetNext

Returns the text object id for the next object of a specified type after specified object.

Syntax: Text_GetNext(TX_Ref, Type)
TX_Ref: a numeric expression representing the object identification number

Type: identifies the origin of the next text object

         1 = text created by an analysis technique

         2 = text created by the text drawing object only, and 

         3 = text created by either the text drawing object or an analysis technique

Returns:  status code indicating whether or not operation is successful

Usage: Value2 = Text_GetNext(2,1);                                    {returns the id of analysis  text after id 2}

Text_GetString

Returns the text string of the specified text object.   (see Text_Delete for syntax)

Usage: TextValue1 = Text_GetString(3);   {returns text string of object number 3}

Text_GetTime

Returns the time of the left edge of the specified text object.   (see Text_Delete for syntax)

Usage: Value2 = Text_GetTime(4);            {returns the time of  text object 4}

Text_GetValue

Returns the price (vertical axis) of the specified text object.   (see Text_Delete for syntax)

Usage: Value1 = Text_GetValue(2);           {returns the price of  text object 2}

Text_GetVStyle

Gets the vertical placement style of the specified text object. (see Text_Delete for syntax)

Returns: 0 for top, 1 for bottom, 2 for center, or error code if operation not successful

Usage: Value2 = Text_GetVStyle(5);          {returns vert style of text object 5}

Text_New

Creates and draws a new text object at a specified date, time, and price location.

Syntax: Text_New(cDate,Time,Price,Text)
cDate: date in YYYMMDD format

Time: time in HHMM 24-hour format

Price: value or numeric expression of the price

Text: text variable or text expression within quotes

Returns: object number if successful, or error code if operation not successful

Note: Drawing objects are numbered by type in the order they are created, from 0 to n. Therefore, 0 is the 

identification number of the first drawing object of that type created, and n is the last object of the same type 

created. 

Usage: Value1 = Text_New(Date, Time, High + 1, "Stock Split");

Reserved Words Quick Reference 367

www.fx1618.com



Text_SetColor

Changes the color of the specified text object.

Syntax: Text_SetColor(TX_ref, Color)
TX_Ref: a numeric expression representing the object identification number

Color: the color name or numeric value

Usage: Text_SetColor(3,red);               {sets text object 3 to color red}

Text_SetLocation

Moves specified text object to a new date, time, and price location.

Syntax: Text_SetLocation(TX_ref, cDate,Time,Price,Text)
TX_Ref: a numeric expression representing the object identification number

cDate: date in YYYMMDD format

Time: time in HHMM 24-hour format

Price: value or numeric expression of the price

Text: text variable or text expression within quotes

Returns: 0 if successful, or error code if operation not successful

Usage: Value1 = Text_SetLocation(2,990114,1500,24.5); {moves text obj 2}

Text_SetString

Changes the text of a specified text object.

Syntax: Text_SetString(TX_ref, Text)
TX_Ref: a numeric expression representing the object identification number

Text: text variable or text expression within quotes

Returns: 0 if successful, or error code if operation not successful

Usage: Value2 = Text_SetString(1, "New String") ;  {changes text for obj 1}

Text_SetStyle

Changes the horizontal and vertical position style for the specified text object.

Syntax: Text_SetStyle(TX_ref, Horiz,Vert)
TX_Ref: a numeric expression representing the object identification number

Horiz: 0 for left, 1 for right, 2 for center

Vert: 0 for top, 1 for bottom, 2 for center

Returns: 0 if successful, or error code if operation not successful

Usage: Value1 = Text_SetStyle(3,0,1) ;     {repositions obj 3 to the left-bottom}

Than

Skip word used to improve readability. Ignored during execution.

Usage: If High > than the Highest(Close, 14) Then {any operation}

The

Skip word used to improve readability. Ignored during execution. (see Than)

368 Reserved Words Quick Reference

www.fx1618.com



Then

Precedes the operation(s) to be executed when the matching If condition is true.

Usage: If Condition1 Then Begin
      {Operations done if condition is true}

End ;

This

Used to reference the current Bar.

Usage: Buy This Bar on Close;

Thursday

Specifies day of the week Thursday (numeric value = 4).

Ticks

Reserved for backward compatibility. Replaced with Points.

TickType

The kind of tick that triggered an option core event: Asset, Option, Future, or Model.

Time

Closing time of the current bar in 24-hour HHMM format.

Usage: Value1 = Time;                 {returns 2130 if the bar time is 9:30pm}

TL_Delete

Deletes the specified trendline from the chart.

Syntax: TL_Delete(TL_Ref)
TL_Ref: a numeric expression representing the trendline identification number

Returns: 0 if operation is successful, or error code if not 

Usage1: TL_Delete(2);                        {deletes trendline number 2}

Usage2: Value1 = TL_Delete(3); {returns status code after deleting trendline 3}

TL_GetAlert

Gets the alert status of the specified trendline object. 

TL_Ref: a numeric expression representing the trendline identification number

Returns: 0 = no alert, 1 = Breakout Intrabar, 2 = Breakout on Close 

Usage: Value2 = TL_GetAlert(4);       {returns alert status for  trendline number 4}

TL_GetBeginDate

The date of the starting point for the specified trendline.   (see TL_Delete for syntax)

Usage: Value1 = TL_GetBeginDate(2);        {returns the start date of  trendline 2}

TL_GetBeginTime

The time of the starting point for the specified trendline.   (see TL_Delete for syntax)

Usage: Value2 = TL_GetBeginTime(3);        {returns the start time of  trendline 3}

Reserved Words Quick Reference 369

www.fx1618.com



TL_GetBeginVal

The price (vertical axis) of a trendline’s starting point.   (see TL_Delete for syntax)

Usage: Value1 = TL_GetBeginVal(4); {returns the start price of  trendline 4}

TL_GetColor

Returns the color value of the specified trendline.   (see TL_Delete for syntax)

Usage: Value1 = TL_GetColor(3);           {returns the color of  trendline 3}

TL_GetEndDate

The date of the ending point for the specified trendline. (see TL_Delete for syntax)

Usage: Value1 = TL_GetEndDate(2);        {returns the end date of  trendline 2}

TL_GetEndTime

The date of the ending point for the specified trendline.   (see TL_Delete for syntax)

Usage: Value2 = TL_GetEndTime(4);          {returns the end time of  trendline 4}

TL_GetEndVal

The price (vertical axis) of a trendline’s ending point.   (see TL_Delete for syntax)

Usage: Value1 = TL_GetEndVal(3); {returns the end price of  trendline 3}

TL_GetExtLeft

True if the specified trendline is extended left, False otherwise.   (see TL_Delete for syntax)

Usage: Condition1 = TL_GetExtLeft(12) ;      {true if trendline 12 extends left}

TL_GetExtRight

True if the specified trendline is extended right, False otherwise. (see TL_Delete for syntax)

Usage: Condition1 = TL_GetExtRight(5) ;      {true if trendline 5 extends right}

TL_GetFirst

Returns the ID number for the first trendline of a specified type.

Syntax: TL_GetFirst(Type)
Type: identifies the origin of the requested first trendline

         1 = trendline created by an analysis technique

         2 = trendline created by the drawing object only, and 

         3 =  trendline created by either the drawing object or an analysis technique

Returns: ID if operation successful or error code if not

Usage: Value2 = TL_GetFirst(2); {returns id of first trendline of type}

TL_GetNext

Returns the text object ID for the next object of a specified type after specified object.

Syntax: TL_GetNext(TL_Ref, Type)
TL_Ref: a numeric expression representing the object identification number

Type: (see TL_GetFirst)

Returns: ID if operation successful or error code if not

Usage: Value1 = TL_GetNext(2,1);      {returns id of trendline draw object after id 2}

370 Reserved Words Quick Reference

www.fx1618.com



TL_GetSize

The line thickness setting (weight) for the specified trendline. (see TL_Delete for syntax)

Usage: Value2 = TL_GetSize(3);              {returns thickness of  trendline 3}

TL_GetStyle

The line style for the specified trendline. 

Syntax: TL_GetStyle(TL_Ref)
TL_Ref: a numeric expression representing the object identification number

Returns: Tool_Solid = 1 (solid) 

Tool_Dashed = 2 (dashed) 

Tool_Dotted= 3 (dotted) 

Tool_Dashed2= 4 (dashed pattern)

Tool_Dashed3= 5 (dashed pattern)

Usage: Value1 = TL_GetStyle(6);             {returns 3 if trendline 6 is dotted}

TL_GetValue

The price (vertical axis) of the specified trendline at date and time.

Syntax: TL_GetStyle(TL_Ref,cDate,Time)
TL_Ref: a numeric expression representing the object identification number

cDate: date in YYYMMDD format

Time: time in HHMM 24-hour format

Returns:  price if operation successful or error code if not

Usage: Value2 = TL_GetValue(2,991104,0930);   {returns the price of  trendline 2}

TL_New

Creates a new trendline using specified start and end points.

Syntax: TL_New(sDate,sTime,sPrice,eDate,eTime,ePrice)
sDate: starting point date in YYYMMDD format

sTime: starting point time in HHMM 24-hour format

sPrice: starting point price

eDate: ending point date in YYYMMDD format

eTime: ending point time in HHMM 24-hour format

ePrice: ending point price

Returns: trendline ID if operation successful, error code if not

Usage: Value1 = TL_New(990107, 0930, 45, 990125, 1600, 37.250);

TL_SetAlert

Sets the alert status for a specified trendline.

Syntax: TL_SetAlert(TL_Ref, Status)
TL_Ref: a numeric expression representing the object identification number

Status: 0=no alert, 1=breakout intrabar alert, 2=breakout on close alert

Usage: TL_SetAlert(3, 1);                  {sets intrabar alert for trendline 3}

Reserved Words Quick Reference 371

www.fx1618.com



TL_SetBegin

Changes the starting point of a specified trendline.

Syntax: TL_SetBegin(TL_Ref,sDate,sTime,sPrice)
TL_Ref: a numeric expression representing the object identification number

(see TL_New for descriptions of sDate,sTime,sPrice)

Usage: TL_SetBegin(4, 990221, 1015, 107.225);  

TL_SetColor

Changes the color of a specified trendline.

Syntax: TL_SetColor(TL_Ref, Color)
TL_Ref: a numeric expression representing the object identification number

Color: the color name or numeric value

Usage: TL_SetColor(3, Blue);                {sets trendline 3 to color blue}

TL_SetEnd

Changes the ending point of a specified trendline.

Syntax: TL_SetEnd(TL_Ref, eDate, eTime, ePrice)
TL_Ref: a numeric expression representing the object identification number

(see TL_New for descriptions of eDate,eTime,ePrice)

Usage: TL_SetEnd(2, 990221, 1515, 207.125);

TL_SetExtLeft

Changes the leftward extension status of a specified trendline.

Syntax: TL_SetExtLeft(TL_Ref, Status)
TL_Ref: a numeric expression representing the object identification number

Status: True turns on leftward extension, False turns it off

Usage: TL_SetExtLeft(2,True);            {turns on left extend for trendline 2}

TL_SetExtRight

Changes the rightward extension status of a specified trendline.

Syntax: TL_SetExtRight(TL_Ref, Status)
TL_Ref: a numeric expression representing the object identification number

Status: True turns on rightward extension, False turns it off

Usage: TL_SetExtRight(3,False);          {turns off right extend for trendline 3}

TL_SetSize

Changes the line thickness setting (weight) for the specified trendline. 

Syntax: TL_SetSize(TL_Ref, Size)

TL_Ref: a numeric expression representing the object identification number

Size: numeric value ranging from 0 (the thinnest) to 6 (the thickest).

Usage: TL_SetSize(2,4);                     {sets trendline 2 to thickness 4}

372 Reserved Words Quick Reference

www.fx1618.com



TL_SetStyle

Changes line style for the specified trendline. 

Syntax: TL_SetStyle(TL_Ref,Type)
TL_Ref: a numeric expression representing the object identification number

Type: Tool_Solid = 1 (solid) 

Tool_Dashed = 2 (dashed) 

Tool_Dotted= 3 (dotted) 

Tool_Dashed2= 4 (dashed pattern)

Tool_Dashed3= 5 (dashed pattern)

Usage: TL_SetStyle(4,Tool_Dashed);             {sets trendline 4 to dashed}

To

Used in a For-Loop statement to separate the starting and ending counter values.

Usage: For Value5 = Start To Start + 10 Begin
{Any operations}

End ;

Today

Retained for backward compatibility. Replaced by This Bar.

Tomorrow

Retained for backward compatibility. Replaced by Next Bar.

Tool_Black

Retained for backward compatibility. Replaced by the color name Black.

Tool_Blue

Retained for backward compatibility. Replaced by the color name Blue.

Tool_Cyan

Retained for backward compatibility. Replaced by the color name Cyan.

Tool_DarkBlue

Retained for backward compatibility. Replaced by the color name DarkBlue.

Tool_DarkBrown

Retained for backward compatibility. Replaced by the color name DarkBrown.

Tool_DarkCyan

Retained for backward compatibility. Replaced by the color name DarkCyan.

Tool_DarkGray

Retained for backward compatibility. Replaced by the color name DarkGray.

Tool_DarkGreen

Retained for backward compatibility. Replaced by the color name DarkGreen.

Reserved Words Quick Reference 373

www.fx1618.com



Tool_DarkMagenta

Retained for backward compatibility. Replaced by the color name DarkMagenta.

Tool_DarkRed

Retained for backward compatibility. Replaced by the color name DarkRed.

Tool_DarkYellow

Retained for backward compatibility. Replaced by the color name DarkYellow.

Tool_Dashed

Represents a dashed line style (2) used with drawing objects.

Tool_Dashed2

Represents a dashed line style (4) used with drawing objects.

Tool_Dashed3

Represents a dashed line style (5) used with drawing objects.

Tool_Dotted

Represents a dotted line style (3) used with drawing objects.

Tool_Green

Retained for backward compatibility. Replaced by the color name Green.

Tool_LightGray

Retained for backward compatibility. Replaced by the color name LightGray.

Tool_Magenta

Retained for backward compatibility. Replaced by the color name Magenta.

Tool_Red

Retained for backward compatibility. Replaced by the color name Red.

Tool_Solid

Represents a solid line style (1) used with drawing objects. 

Tool_White

Retained for backward compatibility. Replaced by the color name White.

Tool_Yellow

Retained for backward compatibility. Replaced by the color name Yellow.

Total

Specifies the number of shares/contracts to exit from a position created by pyramiding.

Usage: Sell 5 Contracts Total Next Bar at Market;
{Exits five contracts/shares from the entire long position}

374 Reserved Words Quick Reference

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



TotalBarsLosTrades

The total number of bars that elapsed during losing trades for all closed trades.

Usage: Value2 = TotalBarsLosTrades ;

TotalBarsWinTrades

The total number of bars that elapsed during winning trades for all closed trades.

Usage: Value1 = TotalBarsWinTrades ;

TotalTrades

The total number of closed trades in the current strategy.

TrailingStopAmt

Retained for backward compatibility with previous versions of the product. Replaced 

by the reserved word SetDollarTrailing.

TrailingStopFloor

Retained for backward compatibility with previous versions of the product. Replaced 

by the reserved word SetPercentTrailing.

TrailingStopPct

Retained for backward compatibility with previous versions of the product. Replaced 

by the reserved word SetPercentTrailing.

True

Represents a true, or correct, conditional expression.

TrueFalse

Defines an input that expects a true/false expression.

Usage: Input: Switch(TrueFalse);         {accepts a  true/false input for Switch}

TrueFalseArray

Defines an input that expects a true/false expression for each array element.

Usage: Input: MyArray[n](TrueFalseArray)       {accepts t/f inputs by value}

TrueFalseArrayRef

Defines an input that expects a true/false variable reference for each array element.

Usage: Input: MyArray[n](TrueFalseArrayRef) {accepts t/f inputs by reference}

TrueFalseRef

Defines an input that expects a true/false variable reference.

Usage: Input: Switch(TrueFalseRef)          {accepts a t/f input by reference}

TrueFalseSeries

Defines an input as a true/false series expression.

Usage: Input: Flag(TrueFalseSeries);          {accepts a t/f input with history}

Reserved Words Quick Reference 375

www.fx1618.com



TrueFalseSimple

Defines an input as a true/false simple expression.

Usage: Input: Switch(TrueFalseSimple);      {accepts a t/f input without history}

TtlDbt_By_NetAssts

Returns the total debt (long + short term) divided by total assets.

Tuesday

Specifies day of the week Tuesday (numeric value = 2).

Under

Used only with Crosses to detect a value crossing under, or below, another value.

Usage: If Value1 Crosses Under Value2 Then {Any Operation} ;

UnionSess1EndTime

Latest session 1 end time of all data in a multi-data chart.

UnionSess1FirstBar

Earliest session 1 first bar time of all data in a multi-data chart.

UnionSess1StartTime

Earliest session 1 start time of all data in a multi-data chart.

UnionSess2EndTime

Latest session 2 end time of all data in a multi-data chart.

UnionSess2FirstBar

Earliest session 2 first bar time of all data in a multi-data chart.

UnionSess2StartTime

Earliest session 2 start time of all data in a multi-data chart.

Units

Retained for backward compatibility.

UNSIGNED

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Until

Reserved for future use.

UpperStr

Used to convert a string expression to uppercase letters. 

Usage1: Value1 = UpperStr("My TextString");   {returns "MY TEXTSTRING"}

UpTicks

Number of ticks on a bar whose value is higher than the tick immediately preceding it.

376 Reserved Words Quick Reference

www.fx1618.com



V

Abbreviation for Volume. Returns the volume of shares/contracts of a referenced bar.

Usage: If MyVol > V of 1 Bar Ago Then SellShort at Close;

Var

Declares a variable name to use throughout your analysis technique. Shorthand form.

Usage: Var: Count(10);        {declares the variable Count with an initial value of 10}

Variable

Declares a variable name to use throughout your analysis technique.

Usage: Variable: Val(5);        {declares the variable Val with an initial value of  5}

Variables

Declares multiple variable names separated by commas.

Usage: Variables: Countup(0),Countdown(10); {declares and initializes variables} 

Vars

Declares multiple variable names separated by commas. Shorthand form.

Usage: Vars: MyVal(2), MyPrice(31);        {declares and initializes variables}

VARSIZE

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

VARSTARTADDR

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

VOID

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Volume

Returns the number of shares/contracts traded for the referenced bar.

Usage: If TestVol > Volume of 3 Bars Ago Then Buy at Market;

Was

Skip word ignored during execution.

Usage: If Close was < than the Lowest(Close, 14) Then {any operation} ;

Wednesday

Specifies day of the week Wednesday (numeric value = 3).

While

Defines instructions that are executed until a true/false expression returns False.

Usage: While Condition1 Begin
{any operations};

End; {continues to loop until the Condition is no longer true}

Reserved Words Quick Reference 377

www.fx1618.com



White

Specifies color White (numeric value = 8) for plots and backgrounds.

WORD

Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.

Year

Year on specified calendar date, in short form (last 2 or 3 digits of year)

Returns the year (YYY) portion of the specified calendar date.

Syntax: Year(cDate);
cDate:  numeric expression for the date in YYMMDD or YYYMMDD format.

Usage: Value1 = Year(1011004)     {returns the year 101 representing 2001}

Yellow

Specifies color Yellow (numeric value = 7) for plots and backgrounds.

Yesterday

Retained for backward compatibility. Refers to the previous bar.

378 Reserved Words Quick Reference

www.fx1618.com



379

About the CD-ROM

INTRODUCTION

The files on the enclosed CD-ROM are TradeStation2000i and TradeStation
6.0 compatible EasyLanguage source code.

System Requirements

Processor: 300 MHz Pentium or better
Hardware: 1024×768 monitor resolution or higher

CD-ROM drive
Software: Windows 95/98/Me/NT/2000/XP
RAM: 128 MB RAM
Hard Drive: 60 MB free space
Software: TradeStation 4.0 or

TradeStation 2000i or
TradeStation 6.0
Microsoft Internet Explorer 5.0 or higher

Internet Connection: Dial-Up (56K bps) or
Direct (ISDN, Cable Modem, DSL, T1)

www.fx1618.com



USING THE FILES

Loading Files

To use the files, launch TradeStation and use the Import feature from within
the TradeStation PowerEditor to import the EasyLanguage source code. Use
the files according to your needs.

Printing Files

If you want to print the files, select File, Print from the pull-down menu.

Saving Files

When you have finished editing a file, you should save it under a new file name
by selecting File, Save As from the pull-down menu.

USER ASSISTANCE

If you have a damaged CD-ROM, please contact Wiley Technical Support at:

Phone: 201-748-6753
Fax: 201-748-6450 (Attention: Wiley Technical Support)
URL: www.wiley.com/techsupport
Email: techhelp@wiley.com

If you need assistance with using the files on the CD-ROM or questions about
the source code, please contact George Pruitt at info@futurestruth.com.

Any questions regarding TradeStation™ products should be forwarded to
TradeStation Securities at www.tradestation.com.

To place additional orders or to request information about other Wiley prod-
ucts, please call (800) 225-5945.

380 About the CD-ROM

www.fx1618.com



381

Index

A

Aan, Peter, interview, 267–269
Account Manager, 26–28
Account Size Required statistics,

82–83
Adjusted profit factor statistics,

92
Adverse trade excursion statistics,

88
ADX function, 71–72
Analysis tab, statistics accessed

via, 88–93
AND operator, 6–7, 41–42
Arps, Jan, Web address, 194 note
Arrays, 58, 172–175

declaring, initializing, and
assigning, 173–174

Average function, 71–72
Average Losing Trade statistic,

84–85

Average Number of Bars Per
Trade statistic, 84

Average Trade statistic, 83–84
Average Winning Trade statistic,

84–85

B

Bar charts, creating from
indicators, 53–57

Barna, Mike, interview, 247–249
Bollinger, John, 115
Bollinger Bandit trading strategy,

115–118, 309
Bollinger Bands, 115–118
Bond systems, 262
Boolean operators, 6–7

in if-then statements, 41–42
Bugs. See Debugging
Buy and Hold statistics, 92

www.fx1618.com



Buy write option strategy,
217–218

C

Calculation module described,
32–37

Call options, defined, 205
CFTC. See Commodity Futures

Trading Commission
(CFTC)

Chahal, Ziad, interview, 250–
253

Charts, 3D data charts, 105–107
Chisolm, Michael, interview,

270–272
Clayburg, John, interview,

232–234
Combinational strategies,

options trading, 225–227
Comments in EasyLanguage, 31
Commission values, setting, 17
Commitment of Traders (COT)

report, 168–178
Commodity Futures Trading

Commission (CFTC),
168–178

Web address, 169
Conditional branching, 39–48
Covered write option strategy,

217–218
Cross above and cross below

keywords, 72
Curly brackets, 31
Currency trading, 235, 241–242
Cycle-finding systems, 130–131

D

Data importation, 169
Data Referencing dialog of

StrategyBuilder, 15
Data types

defined, 2
numeric data, simple and

series, 58
variables and, 2–5

Dates and times, 7–8
Day of Week Analysis, 176–177
Day of Week Volatility Analysis,

177–183
DBS II Fade, 2000i source code

for, 311
Debugging

Print Log and Print Statement
for, 158–160, 166–167

syntax and logical errors, 160
Table Creator, 160–166

Default, keyword, 59
Delta parameter, 213
Delta Society, 231
Directional trading defined, 212
Dollars per Transaction value, 26
Donchain Break Out, trading

strategy tutorial, 13–19
Donchain system, 126
Dynamic Break Out II trading

strategy, 126–133, 310

E

EasyLanguage
fundamentals described, 1–5

382 Index

www.fx1618.com



see also Programming in
EasyLanguage

Edit Menu of PowerEditor, 10
Ehlers, John, interview, 258–

261
Equity Graph reports, 93–96
Equivalent strategies, options

trading, 224–225
Errors, syntax vs. logical, 158
Excel (Microsoft)

compatibility with, 93
preparing data for, 102–105

Excursions, 88

F

Favorable trade excursion
statistics, 88

Feeder trader market, 232–
233

File Menu of PowerEditor, 10
Finite state machines, 191–192
Fitschen, Keith, interview,

235–237
Fixed Unit value, 26
For loops, 48–50
Forward contracts, 202
Fox, Dave, interview, 241–242
Fractional shares, Round

function and, 155
Functions

analysis techniques, 65–70
defined, 75
embedded functions, 72
nested function calls, 315
passing parameters to, 69

G

Gamma parameter, 214
Ghost Trader trading strategy,

149–152, 323–324
Graphs reports, 93–96
“Greek” trading parameters for

options, 213–214
Griffith, Wayne, interview,

243–246

H

Headers, program headers,
31–32

Help, user assistance, 380
Hill, Lundy, interview, 265–266

I

If-then-else statements, 43–48
If-then statements, 39–43

nested if-then statements, 45
Importing data, 169
Indicators, 52–59

bar chart creation, 53–57
defined, 75
scaling options for, 53–54

Inputs
compared to variables, 4–5
input values in

StrategyBuilder, 13–14
setting or changing, 16–17,

24–25
Insert Analysis Technique dialog

of StrategyBuilder, 15
Intermarket Analysis, 192–193

Index 383

www.fx1618.com



International markets, Fitschen
on, 235–237

Intraday trading strategies,
134–148, 318–320

K

Keltner, Charles, 111–112
King Keltner trading strategy,

111–115, 312

L

LeBeau, Charles “Chuck,”
interview, 262–264

Limit order, 12, 22
Logical errors, 158, 160
Long, option trading, 206–209
Long and short trades, statistic,

85
Long call strategy, 216–217
Long call with short stock

strategy, options trading,
220

Long put strategy, 220–221
Long put with long stock

strategy, 223–224
Loops, programming, 48–51

M

Margin requirement, 219
Market makers, options trading,

214–215
Market order, 12, 13

Market risk, measuring, 153
Married put options, 223–224
Marshall, Steve, interview,

254–257
Maximum Consecutive Losers

statistic, 84
Maximum Consecutive Winners

statistic, 84
Maximum Intraday Draw Down

statistic, 82
Mermer, Michael A., interview,

273–275
Modular programming,

debugging and, 160
Money management

research references for, 155
trading strategies, 153–155

Money Manager trading
strategy, 153–155, 325

Moving average indicators, in
King Keltner system,
111–112

Moving averages, 52–53
MyAdxSys, 2000i source code,

315
MyMomRsi, 2000i source code,

315
MyMovAvgSys, 2000i source

code, 315
MyRSIsystem, 32–37
MyTrailPrcntStop, 2000i source

code, 317

N

Naked call option strategies,
218–220

384 Index

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
www.fx1618.com



Number of Trades statistic, 84

O

Open to Open and Open to
Close relationships, 176

Operators
order of precedence, 6–8
use in expressions described,

5–6
Optimization, 96–108

crashes during, 98–99
defined, 96

Options trading
American- vs. European-style

options, 210
changing conditions and,

212–213
closing option trades, 209–

210
combinational strategies,

225–227
equivalent strategies, 224–225
fundamentals of options

discussed, 202–204
“greek” trading parameters,

213–214
listed options, 204–205
long and short, 206
market makers, 214–215
out-of-the-money options,

204, 207–209
put and call options defined,

205
single-option strategies,

215–224
underlying assets and, 202–204

unique properties of options,
210–212

value of options, 206–207
volitility-based, 212
see also Single-option

strategies
Option trading, performance

(margin) requirement,
219

Order of operations, 6–8
debugging and, 162

Orders, EasyLanguage, 12
strategies and, 70–72

OR operator, 6–7, 41–42
Out-of-the-money options, 204,

207–209

P

PaintBar studies, 59–65
Pattern Recognition, 188–192
Percent Change charts, 194–200

creation of, 195
use of, 196–200

Performance
Analysis tab statistics, 88–93
Graph reports, 93–96
Summary report statistics,

78–85
tracking with Percent Change

Charts, 194–200
trade-by-trade statistics, 85–88
see also Optimization

Performance requirement, 219
PivotChart and PivotChart

Wizard, 102–105
PointValue, 47

Index 385

www.fx1618.com



Portfolio analysis, 77–78
Position Information dialog,

14–15
PowerEditor, 8

in TradeStation 2000i, 9–11
Price Scale, 47
Print Log and Print Statement

for debugging, 158–160,
166–167

Profit factor statistics, 88, 92
Programming in EasyLanguage

calculation module, 32–37
functions, 65–70
headers in, 31–32
if-then conditional branching,

39–43
if-then-else conditional

branching, 43–48
for loops, 48–50
modularization in, 32–37
MyRSIsystem, 32–37
pattern recognition and fuzzy

logic, 188–192
structured programming vs.

“spaghetti code,” 30
syntax errors (See Apx. A, 283-

308)
while loops, 50–51
see also Debugging

Protective put options, 223–224
Pruitt, George, 126
Put options, defined, 205

R

Relative Strength Index (RSI),
228–229

function values, 33
MyRSIsystem, 32–37

Remarks, defined, 2
Repetitive control structures in

programming, 48–
51

Research tools
Commitment of Traders

report, 168–178
Day of Week Analysis,

176–177
Day of Week Volatility

Analysis, 177–183
Intermarket Analysis, 192–193
Pattern Recognition, 188–192
Time of Day Analysis,

183–187
Reserved words

defined, 1
use explained, 7
see also Apx C., p. 326-378 for

complete alphabetical
listing

Return on Account statistic,
82–83

Rho parameter, 214
Rina Index, 92
Round function for fractional

shares, 155
RSI (Relative Strength Index).

See Relative Strength
Index (RSI)

S

Seasonal Soybean trading
strategy, 317

386 Index

www.fx1618.com



Security issues, 249
Selection, technical analysis, 194
Sequentials, 62
Series numeric data, 57–58
SetPercent Trailing function, 74
SetStopLoss function, 74
Shares, as key word, 155
Sharpe ratio, 92
Short, option trading, 206–209
Short covered call strategy,

217–218
Short covered put strategy, 222
Short naked call strategy,

218–220
Short naked put strategy,

222–223
ShowMe studies, 59, 64
Simple numeric data, 58
Single-option strategies

long call strategy, 216–217
long call with short stock

strategy, 220
long put strategy, 220–221
long put with long stock

strategy, 223–224
short covered call strategy,

217–218
short covered put strategy, 222
short naked call strategy,

218–220
short naked put strategy,

222–223
Slippage values, 17, 26
Statistics

Analysis tab access to, 88–93
in optimization reports, 98–99
Trades tab access to, 85–88

Stop order, 12, 22

Strategies
as analysis techniques, 70–75
Bollinger Bandit trading

strategy, 115–118
creating with StrategyBuilder,

13–18
defined, 75
Dynamic Break Out II trading

strategy, 126–133
Ghost Trader trading strategy,

149–152
King Keltner trading strategy,

111–115
Money Manager trading

strategy, 153–155
Super Combo Day Trading

strategy, 134–148
Thermostat trading strategy,

119–125
see also Options trading

StrategyBuilder, TradeStation,
13–18

Strategy Optimization report,
186

Strategy Tracking in
TradeStation 6.0, 26–
28

Strike prices for options,
202–204

Stuckey, Randy, interview,
238–240

Summary reports, 78–85
Summary tab, statistics access,

78–85
Super Combo Day Trading

strategy, 134–148,
318–320

Symbols, mathematical, 6–8

Index 387

www.fx1618.com



Syntax errors, 158. See Apx. A,
283-308, for numerical
listing

System requirements, 379

T

Table Creator, 160–166
Thermostat trading strategy,

119–125, 321–322
Theta parameter, 214
3D data charts, 105–107
Time frame for trends, 134,

137–139
Time of Day Analysis, 183–187
Times, 7–8
Timing, technical analysis and,

194
Tolan, John, interview, 254–

257
Tool Menu of PowerEditor, 11
Total Net Profit statistic, 81–82
Trades tab, 85–88
TradeStation 6.0

Account Manager, 26–28
menu functions in, 20–21
PowerEditor in, 18–28
strategy creation in, 23–25
Strategy Tracking in, 26–28
vs. TradeStation 2000i, 8

TradeStation 2000i
menu functions of, 10–11
source code listings, 309–325
vs. TradeStation 6.0, 8

Trade statistics, 85–88
Trends

time of day and, 183–187

trend-following strategies,
119–135, 254–257,
270–273

U

Underlying assets, 202

V

Variables
arrays and, 58
defined, 2
inputs compared to, 4–5
naming conventions, 2–3
Vars: statements, 3–4

Vega parameter, 214
View Menu of PowerEditor, 11
Volatility, 177–183

option trading and, 212

W

Walk-forward tests for strategies,
107–108

Web address
Arps, Jan, 194 note

Web addresses
Commodity Futures Trading

Commission (CFTC),
169

help, user assistance, 380
Java Signals demo, 169
Yates, Len, 201 note

While loops, 50–51

388 Index

www.fx1618.com



Wilder, Welles, interview,
228–231

Williams, Larry, interview,
276–282

Y

Yates, Len, Web address, 201
note

Index 389

www.fx1618.com


	Introduction
	Fundamentals
	EasyLanguage Program Structure
	Program Control Structures
	TradeStation Analysis Techniques
	Measuring Trading System Performance and System Optimization
	Trading Strategies That Work
	Debugging and OutPut
	TradeStation as a Research Tool
	Using TradeStation’s Percent Change Charts to Track Relative Performance*
	Options*
	Interviews with Developers
	EasyLanguage Syntax Errors



